[image: image1.png]

Universal Business Language (UBL) Code List Representation
Version: 1.0 20 april 2004
Document identifier:

WD-UBLCLSC-CODELIST-20040420.DOC
Location:

http://www.oasis-open.org/committees/ubl/

Editor:

Marty Burns for National Institute of Standards and Technology, NIST, burnsmarty@aol.com
Contributors:

Anthony Coates abcoates@londonmarketsystems.com
Mavis Cournane mavis.cournane@cognitran.com

Suresh Damodaran Suresh_Damodaran@stercomm.com
Anne Hendry anne.hendry@sun.com
G. Ken Holman gkholman@CraneSoftwrights.com
Serm Kulvatunyou serm@nist.gov

Eve Maler eve.maler@sun.com
Tim McGrath tmcgrath@portcomm.com.au

Mark Palmer mark.palmer@nist.gov

Sue Probert sue.probert@dial.pipex.com

Lisa Seaburg lseaburg@aeon-llc.com
Paul Spencer paul.spencer@boynings.co.uk

Alan Stitzer alan.stitzer@marsh.com
Frank Yang Frank.Yang@RosettaNet.org
Abstract:

This specification provides rules for developing and using reusable code lists. This specification has been developed for the UBL Library and derivations thereof, but it may also be used by other technologies and XML vocabularies as a mechanism for sharing code lists and for expressing code lists in W3C XML Schema form.

Status:

This document was developed by the OASIS UBL Code List Subcommittee [CLSC]. Your comments are invited. Members of this subcommittee should send comments on this specification to the ubl-clsc@lists.oasis-open.org list. Others should subscribe to and send comments to the ubl-comment@lists.oasis-open.org list.
For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights (OASIS-IPR) section of the Security Services TC web page (http://www.oasis-open.org/who/intellectualproperty.php
Table of Contents

2Table of Contents

41
Introduction

41.1 About the current version

51.2 Scope and Audience

51.3 Terminology and Notation

62
Requirements for Code Lists

62.1 Overview

62.2 Use and management of Code Lists

62.2.1 [R1] First-order business information entities

62.2.2 [R2] Second-order business information entities

72.2.3 [R3] Data and Metadata model separate from Schema representation

72.2.4 [R4] XML and XML Schema representation

72.2.5 [R5 (Future)] Machine readable data model

72.2.6 [R6 (Future)] Conformance test for code lists

72.2.7 [R6a] Supplementary components available in instance documents

82.3 Types of code lists

82.3.1 [R7] UBL maintained Code List

82.3.2 [R8] Identify and use external standardized code lists

82.3.3 [R9] Private use code list

82.4 Technical requirements of Code Lists

82.4.1 [R10] Semantic clarity

82.4.2 [R11] Interoperability

82.4.3 [R12] External maintenance

92.4.4 [R13] Validatability

92.4.5 [R14] Context rules friendliness

92.4.6 [R15] Upgradability

92.4.7 [R16] Readability

92.4.8 [R17] Code lists must be unambiguously identified

92.4.9 [R18 (Future)] Ability to prevent extension or modification

92.5 Design Requirements of Code List Data Model

92.5.1 [R19] A list of the values (codes) for a code list

92.5.2 [R20 (Future)] Multiple lists of equivalents values (codes) for a code list

102.5.3 [R21] Unique identifiers for a code list

102.5.4 [R22] Unique identifiers for individual values of a code list

102.5.5 [R23] Names for a code list

102.5.6 [R24] Documentation for a code list

102.5.7 [R25] Documentation for individual values of a code list

102.5.8 [R26 (Future)] The ability to import, extend, and/or restrict other code lists

102.5.9 [R27 (Future)] Support for describing code lists that cannot be enumerated

102.5.10 [R28 (Future)] Support for references to equivalent code lists

102.5.11 [R29 (Future)] Support for individual values to be mapped to equivalent values in other code lists

112.5.12 [R30 (Future)] Support for users to attach their own metadata to a code list

112.5.13 [R31 (Future)] Support for users to attached their own metadata to individual values of a code list

112.5.14 [R32 (Future)] Support for describing the validity period of the values

112.5.15 [R33] Identifier for UN/CEFACT DE 3055.

123
Data and Metadata Model for Code Lists

123.1 Data Model Definition

123.2 Supplementary Components (Metadata) Model Definition

133.3 Examples of Use

134
XML Schema representation of Code Lists

134.1 Data Model Mapping

134.2 Supplementary Components Mapping

134.3 Namespace URN (Future)

134.4 Namespace Prefix

134.5 Code List Schema Generation

134.5.1 Data model and example values

134.5.2 Schema to generate

134.5.3 Schema file name

134.6 Code List Schema Usage

134.7 Instance

134.8 Deriving New Code Lists from Old Ones (future)

134.8.1 Extending code lists

134.8.2 Restricting code lists

135
Conformance to UBL Code Lists (future)

136
References

13Appendix A. Revision History

13Appendix B. Notices

1 Introduction

Trading partners utilizing the Universal Business Language (UBL) must agree on restricted sets of coded values, termed "code lists", from which values populate particular UBL data fields. Code lists are accessed using many technologies, including databases, programs and XML. Code lists are expressed in XML for UBL using W3C XML Schema for authoring guidance and processing validation purposes.
It is important to note that XML schema languages are not purely abstract data models. They provide only a particular representation of the data. In addition, there are many roughly equivalent design choices (e.g. elements versus attributes). The underlying logical model is obscured, and can be difficult to extract. Therefore, XML schema languages are principally useful as a way of specifying rules to an XML validation engine. Database schemas and programming language class models would have their own specific representations of the logical data models.

A good logical data model format should allow the information about code lists to be expressed in a format that is as simple and unambiguous as possible. To maximize the abstraction on one hand, and the utility of the code list representations on the other, this document first derives an abstract data model of a code list, and then, an XMLSchema representation of that data model.

The document begins with a section expositing the requirements adopted by the committee in order to make certain that design follows requirements. These requirements were used to steer the design choices elected in the balance of the document.

This specification was developed by the OASIS UBL Code List Subcommittee [CLSC] to provide rules for developing and using reusable code lists expressed using W3C XML Schema [XSD] syntax.
The contents combine requirements and solutions previously developed by UBL’s Library, Naming, and Design Rules subcommittee [CL5], the work of the National Institute of Standards “eBusiness Standards Convergence Forum” [eBSC] with contributions from Frank Yang and Suresh Damodaran of Rosettanet [eBSCMemo], and position papers by Anthony Coates [COATES], Gunther Stuhec [STUHEC], and Paul Spencer [SPENCER].
The data model attempts to be sufficiently general to be employable with other technologies in other scenarios that are outside the scope of this committee's work. This specification is organized as follows:

· Section 2 provides requirements for code lists;
· Section 3 provides a data and metadata model of code lists;
· Section 4 is an XMLSchema representation of the model;
· Section 5 is the recommendations for code producers and the compliance rules.
1.1 About the current version

The Code List model described in this paper for UBL 1.0 has laid much of the groundwork for extensible code lists. It includes an extensibility mechanism based on XSD substitution groups that has not been adopted for UBL 1.0 but will serve as a starting point for work on a code list extension mechanism for UBL 1.1. The current specification places a priority on uniformity of code list metadata independent of the mechanism eventually adopted for code list extension.

The balance of this document presents a comprehensive model of code list data. Those features that are to be considered for adoption in UBL 1.1 are labeled "(Future)". They appear in the context of their proposed use in order to present a solution that meets all the requirements identified herein for code lists, but it should be understood that they represent proposals as this point and are subject to change in light of further discussions.

Persons wishing to engage in the further evolution of this specification are urged to join the OASIS Universal Business Language Technical Committee (http://oasis-open.org/).

1.2 Scope and Audience

The rules in this specification are designed to encourage the creation and maintenance of code list modules by their proper owners as much as possible. It was originally developed for the UBL Library and derivations thereof, but it is largely not specific to UBL needs; it may also be used with other XML vocabularies as a mechanism for sharing code lists in XSD form. If enough code-list-maintaining agencies adhere to these rules, we anticipate that a more open marketplace in XML-encoded code lists will emerge for all XML vocabularies.

This specification assumes that the reader is familiar with the UBL Library and with the ebXML Core Components [CCTS1.9] concepts and ISO 11179 [ISO 11179] concepts that underlie it.

1.3 Terminology and Notation

The text in this specification is normative for UBL Library use unless otherwise indicated. The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this specification are to be interpreted as described in [RFC2119].

Terms defined in the text are in bold. Refer to the UBL Naming and Design Rules [NDR] for additional definitions of terms.

Core Component names from ebXML are in italic.

Example code listings appear like this.

Note: Non-normative notes and explanations appear like this.

Conventional XML namespace prefixes are used throughout this specification to stand for their respective namespaces as follows, whether or not a namespace declaration is present in the example:

The prefix xs: stands for the W3C XML Schema namespace [XSD].

The prefix xhtml: stands for the XHTML namespace.

The prefix iso3166: stands for a namespace assigned by a fictitious code list module for the ISO 3166-1 country code list.

2 Requirements for Code Lists

“There can be no solution without a requirement!”
This section summarizes the requirements to be addressed by this paper.
[3/9/04 MJB] The requirements in this section need to be associated ultimately with the design in sections 3 and 4. This will be done by listing requirements addressed in each subsection below the subsection title line.
2.1 Overview

The rules in this specification are designed to encourage the creation and maintenance of code list modules by their proper owners as much as possible. It was originally developed for the UBL Library and derivations thereof, but it is largely not specific to UBL needs; it may also be used with other vocabularies as a mechanism for sharing code lists. If enough code-list-maintaining agencies adhere to these rules, we anticipate that a more open marketplace in code lists will emerge for all vocabularies.

The goal is to provide a representation for code lists that are extensible, restrictable, traceable, and cognizant of the need for code lists to be maintained by various organizations who are authorities on their content.
Note that the code list mechanism of this specification needs to support all of the requirements in this section. However, any single code list based on this specification may not be required to meet all requirements simultaneously. The appropriate subset of requirements that a given code list must support is summarized in the use cases presented in the conformance section (5 Conformance to UBL Code Lists).
2.2 Use and management of Code Lists

This section describes requirements for the use and management of code lists. Requirements are identified in the heading for each one as: [Rn], where ‘n’ is the requirement number. This draft contains requirements that have been accumulated for code lists in general. In order to allow for the interim publishing of this specification, several of the requirements have been labeled as future requirements: [Rn (Future)]
2.2.1 [R1] First-order business information entities

Code list values may appear as first-order business information entities (BIEs). For example, one property of an address might be a code indicating the country. This information appears in an element, according to the Naming and Design Rules specification [NDR]. For example, in XML a country code might appear as:
<Country>UK</Country>

2.2.2 [R2] Second-order business information entities

Code list values may appear as second-order information that qualifies another BIE. For example, any information of the Amount core component type must have a supplementary component (metadata) indicating the currency code. For example, in XML a currency code might appear as an attribute – the value of element Currency is 2456000; the code EUR describes that these are in Euros:
<Currency code=”EUR”>2456000</Currency>

2.2.3 [R3] Data and Metadata model separate from Schema representation

Since all uses of code lists will not be exclusively within the XML domain – ie. Databases, etc…, it is desirable to separate the description of the data model from its XML representative form. This will facilitate use for other purposes of the semantically identical information.

The current UBL code list documents speak of other XML specifications re-using UBL's code list Schemas. While this may occur, there are already many specifications whose use of XML is sufficiently different from UBL's that re-use of UBL Schemas (or Schema fragments) is not an option. That does not mean that those other specifications cannot be interoperable with UBL at the code list level.

Code list interoperability comes about when different specifications or applications use the same enumerated values (or aliases thereof) to represent the same things/concepts/etc. Sharing XML schemas (or fragments) is one way of achieving this, but it is not a necessary method for achieving this goal.

Broader interoperability can be achieved instead by defining a format which models code lists independently of any validation or choice mechanisms that they may be used with. Such a data model should be able to be processed to produce the required XML Schemas, and should also be able to be processed to produce other artifacts, e.g. Java type-safe enumeration classes, database Schemas, code snippets for HTML forms or XForms, etc.

2.2.4 [R4] XML and XML Schema representation

The principal anticipated use of the code list model will be in XML application – XML for usage, and XMLSchema for validation of instance documents. This paper should realize a proper XML / XMLSchema representation for the code list model.
2.2.5 [R5 (Future)] Machine readable data model

A data model is an abstraction and it must be converted to explicit representation for use. The principal such use anticipated by this effort is that of XML data exchange. A machine readable representation of the data model makes the lossless(??) transfer of all meaning to the representation of choice easier since it can be automated. It is therefore desirable that the data model be expressed in a machine readable form.

2.2.6 [R6 (Future)] Conformance test for code lists

An abstract model for code lists requires a method to ensure conformance and consistency of the rendering of instance Schemas based on the model.

2.2.7 [R6a] Supplementary components available in instance documents

Instance documents often have fiduciary requirements. This requirement is independent of the need to be able to validate contents according to a referenced schema. This requires that some meta-information be explicitly contained in the instance document, irrespective of its availability in a referenced document. It is therefore desirable that:
· The supplementary components of the code lists of code list values utilized in a UBL instance be available in the XML instance proper without any processing from any external source including any schema expression.

· The supplementary components be available for all code-list-value information items even when two or more such information items are found in the set of data and attribute information items for any given element.
2.3 Types of code lists

2.3.1 [R7] UBL maintained Code List

UBL will make use of code lists that describe information content specific to UBL.
In some cases the UBL Library may have to be extended to meet specific business requirements. In other cases where a suitable code list does not exist in the public domain, that code list and all its values may have to be added to the UBL Library where it will be maintained. Both of these types of code lists would be considered UBL-internal code lists.

2.3.2 [R8] Identify and use external standardized code lists

Because the majority of code lists are owned and maintained by external agencies, UBL will make maximum use of such external code lists where they exist. The UBL Library SHOULD identify and use external standardized code lists rather than develop its own UBL-native code lists.

2.3.3 [R9] Private use code list

This model must support the construction of private code lists where an existing external code list needs to be extended, or where no suitable external code list exists.
2.4 Technical requirements of Code Lists

Following are technical quality requirements for code lists.

2.4.1 [R10] Semantic clarity

The ability to “de-reference” the ultimate normative definition of the code being used. The supplementary components for “Code.Type” CCTs are the expected way of providing this clarity, but there are many ways to supply values for these components in XML, and it’s even possible to supply values in some non-XML form that can then be referenced by the XML form.

2.4.2 [R11] Interoperability

Interoperability can be thought of as the sharing of a common understanding of the limited set of codes expected to be used. There is a continuum of possibilities here. For example, a schema datatype that allows only a hard-coded enumerated list of code values provides “hard” (but inflexible) interoperability. On the other hand, merely documenting the intended shared values is more flexible but somewhat less interoperable, since there are fewer penalties for private arrangements that go outside the standard boundaries. This requirement is related to, but distinct from, validatability and context rules friendliness.

2.4.3 [R12] External maintenance

The ability for non-UBL organizations to create XSD schema modules that define code lists in a way that allows UBL to reuse them without modification on anyone’s part. Some standards bodies are already doing this, although we recognize that others may never choose to create such modules.

2.4.4 [R13] Validatability

The ability to use XSD to validate that a code appearing in an instance is legitimately a member of the chosen code list. For the purposes of the analysis presented here, “validatability” will not measure the ability for non-XSD applications (for example, based on perl or Schematron) to do validation.

2.4.5 [R14] Context rules friendliness

The ability to use expected normal mechanisms of the context methodology for allowing codes from additional lists to appear (extension) and for subsetting the legitimate values of existing lists (restriction), without adding custom features just for code lists.

2.4.6 [R15] Upgradability

The ability to begin using a new version of a code list without the need for upgrading, modifying, or customizing the schema modules being used.

2.4.7 [R16] Readability

A representation in the XML instance that provides code information in a clear, easily readable form.

2.4.8 [R17] Code lists must be unambiguously identified

(1) - any two uses of the same namespace URI represent the use of the same code list definition
(2) - no two differing code list definitions shall be represented by the same namespace URI
Business issue: When two trading partners identify the use of a code list, there must not be any ambiguity. Should either partner create a code list or change an existing code list, the identification of the resulting code list must be distinct from that of its origin.

2.4.9 [R18 (Future)] Ability to prevent extension or modification

Certain code lists should not be extensible. For example, the traditional English list of colors in a rainbow, RED ORANGE YELLOW GREEN BLUE INDIGO VIOLET. It should be possible to indicate that such a code list is not extensible so the users can be assured of this constancy in its usage.
2.5 Design Requirements of Code List Data Model

What follows is a list of some of the features that a code list data model should provide.

2.5.1 [R19] A list of the values (codes) for a code list

The code list must contain one or more valid values.

2.5.2 [R20 (Future)] Multiple lists of equivalents values (codes) for a code list

Individual code values must be able to be represented in multiple ways to account for individual business requirements. For example, integers & mnemonics may both be needed. For days of the week, both well accepted names, abbreviations, and integers might be convenient to represent Sunday/SUN/1 Monday/MON/2 Tuesday/TUE/3 Wednesday/WED/4 Thursday/THU/5 Friday/FRI/6 Saturday/SAT/7.
2.5.3 [R21] Unique identifiers for a code list

The code list must contain a unique identifier to be able to reference the entire code list as an item.
2.5.4 [R22] Unique identifiers for individual values of a code list

Each code within the code list must contain a unique identifier to be able to reference that particular code without knowing the code value or decode value for that code.
2.5.5 [R23] Names for a code list

Each code list must have a unique name that intuitively implies the content of the list.
2.5.6 [R24] Documentation for a code list

Each code list must contain documentation which describes, in detail, the business usage for this code list.
2.5.7 [R25] Documentation for individual values of a code list

Each code value on the code list must not only be able to support valid values, but must also allow optional index values and a long description to convey, in detail, the business meaning and usage for this code value.
2.5.8 [R26 (Future)] The ability to import, extend, and/or restrict other code lists

The model for code lists must be able to provide the ability to extend, restrict or import additional values.
2.5.9 [R27 (Future)] Support for describing code lists that cannot be enumerated
Either because of size, volatility, or proprietary restrictions (e.g. a WSDL description of a Web service that can validate which of a set of codes are members of a particular code list) ??
2.5.10 [R28 (Future)] Support for references to equivalent code lists

Each code list must be able to refer to other code lists that may or may not be used in place of it. These references are not necessarily exactly the same, but may be equivalent based on business usage.
[3/9/04 MJB] Need to add description of use case for this. Why is this a requirement?
2.5.11 [R29 (Future)] Support for individual values to be mapped to equivalent values in other code lists

Each code list value must be able to refer to other code list values that may or may not be used in place of it. These references are not necessarily exactly the same, but may be equivalent based on business usage.

[3/9/04 MJB] Need to add description of use case for this. Why is this a requirement?
2.5.12 [R30 (Future)] Support for users to attach their own metadata to a code list

Each code list must have the flexibility to have additional descriptive information added by an individual user to account for unique business requirements.
2.5.13 [R31 (Future)] Support for users to attached their own metadata to individual values of a code list

Each code value must have the flexibility to have additional descriptive information added by an individual user to account for unique business requirements.
2.5.14 [R32 (Future)] Support for describing the validity period of the values
An effective date and expiration date should be established so that the code list can be scoped in time. See, for example, “Patterns for things that change with time”, http://martinfowler.com/ap2/timeNarrative.html
2.5.15 [R33] Identifier for UN/CEFACT DE 3055.

Many code lists have been defined by UN/CEFACT. The code list model requires a representation of an identifier for this standard UNTDED 3055[UNTDED 3055]. This identifier uniquely identifies UN/EDIFACT standard code lists.
3 Data and Metadata Model for Code Lists

This section provides rules for developing and using reusable code lists. These rules were developed for the UBL Library and derivations thereof, but they may also be used by other code-list-maintaining agencies as guidelines for any vocabulary wishing to share code lists. See section 5.0 Conformance.

Since the UBL Library is based on the ebXML Core Components Version1.9, 11 December 2002; see [CCTS1.9]), the supplementary components identified for the Code. Type core component type are used to identify a code as being from a particular list.

Note that the model in this section is presented in two parts:

A data model for the codes themselves, and,

A metadata model for “supplementary components” that describe the entire list

3.1 Data Model Definition
The data model of codes in a code list is presented below.

	CCT
	UBL Name
	Object Class
	Property Term
	Represen-tation Term
	Primitive Type
	Card.
	Remarks

	Code. Content
	Content
	Code
	Content
	Text
	String
	1..1
	Required

	Code. Name. Text
	CodeName
	Code
	Name
	Text
	String
	0..n
	Optional

	N/A
	CodeDescription
	Code Description
	Description
	Text
	String
	0..n
	Optional

	N/A
	CodeIndex (Future)
	Code Index
	Index
	Numeric
	Number
	0..1
	Optional

3.2 Supplementary Components (Metadata) Model Definition

The following model contains the supplementary components description of a code list.

	CCT
	UBL Name
	Object Class
	Property Term
	Represen-tation Term
	Primitive Type
	Card.
	Remarks

	N/A
	name
	Code
	Name
	Text
	String
	0..1
	Optional

	Code List. Identifier
	CodeListID
	Code List
	Identification
	Identifier
	String
	0..1
	Optional

	Code List. Agency. Identifier
	CodeListAgencyID
	Code List
	Agency
	Identifier
	String
	0..1
	Optional

	Code List. Agency Name. Text
	CodeListAgencyName
	Code List
	Agency Name
	Text
	String
	0..1
	Optional

	Code List. Name. Text
	CodeListName
	Code List
	Name
	Text
	String
	0..1
	Optional

	Code List. Version. Identifier
	CodeListVersionID

	Code List
	Version
	Identifier
	String
	0..1
	Optional

	Code List. Uniform Resource. Identifier
	CodeListURI
	Code List
	Uniform Resource
	Identifier
	String
	0..1
	Optional

	Code List Scheme. Uniform Resource. Identifier
	CodeListSchemeURI
	Code List Scheme
	Uniform Resource
	Identifier
	String
	0..1
	Optional

	Language. Identifier
	LanguageID
	Language
	Identifier
	Identifier
	String
	0..1
	Optional

	Code List . Namespace . Prefix. Identifier
	CodeListNamespacePrefixID
	Code List
	Namespace Prefix
	Identifier
	String
	0..1
	Optional

	N/A
	CodeListDescription
	Code List
	Description
	Text
	String
	0..1
	Optional

	N/A
	CodeListCredits
	Code List
	Credits
	Text
	String
	0..1
	Optional

3.3 Examples of Use

The data type “Code“ is used for all elements that should enable coded value representation in the communication between partners or systems, in place of texts, methods, or characteristics. The list of codes should be relatively stable and should not be subject to frequent alterations (for example, CountryCode, LanguageCode, etc.). Code lists must have versions.

If the agency that manages the code list is not explicitly named and is specified using a role, then this takes place in an element type’s name.

The following types of code can be represented:

a.) Standardized codes whose code lists are managed by an agency from the code list DE 3055.

	Code
	Standard

	CodeListID
	Code list for standard code

	CodeListVersionID
	Code list version

	CodeListAgencyID
	Agency from DE 3055 (excluding roles)

b.) Proprietary codes whose code lists are managed by an agency that is identified by using a standard.

	Code
	Proprietary

	CodeListID
	Code list for the propriety code

	CodeListVersionID
	Version of the code list

	CodeListAgencyID
	Standardized ID for the agency (normally the company that manages the code list)

	CodeListSchemeURI
	ID schema for the schemeAgencyId

	CodeListURI
	Agency DE 3055 that manages the standardized ID ‘listAgencyId’

c.) Proprietary codes whose code lists are managed by an agency that is identified without the use of a standard.

	Code
	Proprietary

	CodeListID
	Code list for the proprietary code

	CodeListVersionID
	Code list version

	CodeListAgencyID
	Standardized ID for the agency (normally the company that manages the code list)

	CodeListSchemeURI
	ID schema for the schemeAgencyId

	CodeListURI
	‘ZZZ’ (mutually defined from DE 3055)

d.) Proprietary codes whose code lists are managed by an agency that is specified by using a role or that is not specified at all.

The role is specified as a prefix in the tag name. listID and listVersionID can optionally be used as attributes if there is more than one code list. If there is only one code list, no attributes are required.

	Code
	Proprietary

	CodeListID
	ID schema for the proprietary identifier

	CodeListVersionID
	ID schema version

4 XML Schema representation of Code Lists
[3/9/04 MJB] This section still needs correction to match the needs of the library content subcommittee when they settle on the specific set of supplementary components necessary when a code list is used as an element or as an attribute.
This section describes how the data model is mapped to XML schema [XSD]. The code list mechanism described in this paper assumes that it will be used in the UBL context according to the following graphic that describes the type derivation hierarchy for code list and related schemas [UBL1-SD]:

[image: image2.jpg]<simport=> <dimpots> <Simport>> SSmPOT® cimyorts>
Comimon|Schema Modules
S <imprt>> <<ithport>>
| v

e }7 Code List Specialised Datatypes (CL)

<<import>> |

Core Componert Parameters

Figure 1 UML Diagram of UBL Schemas type hierarchy

As shown in the figure, an abstract model of “any” UBL code list appears in a code list specific namespace.
Note that an instance of a code list is derived in several pieces – a simpleType that contains the actual content of the code list, and, a complexType with simple content that attaches the optional supplementary components to the enumeration. The following procedure describes the construction of a code list schema:
· Define an abstract element for inclusion in extensible schemas (future)
· Define a simpleType to hold the enumerated values

· Define a complexType to add the supplementary components

· Define a global attribute to contain the enumerated values as an attribute and for supplementary components as needed. (future)
· Define an element that substitutes for the abstract type to enable usage in unextended schemas (future)
· Define a comprehensive URN to hold supplementary components that can qualify uniqueness of usage (future)
4.1 Data Model Mapping

The following table summarizes the component mapping of the data model. Items in braces, “{}” are references to the data model components. For example:
{code.name} represents the contents of the name of the code list, i.e. CountryCode;
“{code.name} Type” represents the contents of the name of the code list, i.e. “CountryCodeType”;

	· UBL Name
	· XMLSchema Mapping

	· Code.Content
	· 1. Abstract element (Future)
 <xs:element name="{code.name}A" type="xs:token" abstract="true"/>

· 2. Simple type to hold code list values and optional annotations
 <xs:simpleType name="{code.name}Type">

 <xs:restriction base="xs:token">
 <xs:enumeration value="{code.content}"
 <xs:annotation>

 <xs:documentation>

 {code.description}

 </xs:documentation>

 </xs:annotation>

 </xs:enumeration>

 <xs:enumeration value="{code.content}"/>

 <xs:enumeration value="{code.content}"/>

 . . .

 </xs:restriction>
 </xs:simpleType>

· 3. Complex type to associate supplementary values with code list values that substitutes for the abstract type.

<xs:complexType name="{code.name}">

 <xs:annotation>

 <xs:documentation>

 <ccts:Instance>

 <!-- Data and values stored in this space
 are meant for instance-processing
 purposes, and are non-normative. -->

 <ccts:Prefix>loc</ccts:Prefix>

 <ccts:CodeListQualifier>{code.name}

 </ccts:CodeListQualifier>

 <ccts:CodeListAgency>{Code.listAgencyID}

 </ccts:CodeListAgency>

 <ccts:CodeListVersion>{Code.listVersionID}

 </ccts:CodeListVersion>

 </ccts:Instance>

 </xs:documentation>

 </xs:annotation>

 <xs:simpleContent>

 <xs:extension base="{Code.name}Type">

 <xs:attribute name="CodeListID"
 type="xs:token" fixed="{CodeListID}"/>

 <xs:attribute name="CodeListAgencyID"
 type="xs:token" fixed="{CodeListAgencyID}"/>

 <xs:attribute name="CodeListVersionID"
 type="xs:string" fixed="{CodeListVersionID}"/>

 . . . additional optional attributes

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

· 4. Attribute (Future)
 <xs:attribute name="{Code.name}"
 type="{Code.name}ContentType"/>

· 5. Element to substitute for abstract element in non-exended schemas (Future)
 <xs:element name="{Code.name}" type="{Code.name}Type"

 substitutionGroup="{Code.name}TypeA"/>

	· Code.Description
	Xs:annotation/ xs:documentation/

	· Code.Value
	Xs:annotation/ xs:documentation/

4.2 Supplementary Components Mapping
The following table shows all supplementary components of the code type. It also shows the current representation by using attributes and the recommended optional representation by using namespaces and annotations.
	UBL Name
	Optional XMLSchema Mapping
	Optional

	
	URN mapping
	complex type attribute mapping

	name
	xs:annotation/
xs:documentation/
cc:codename
	· This is the default name of the implemented element and attribute above.

	CodeListID
	namespace (URN)
1. position
Mandatory
	<xs:attribute name="CodeListID" type="xs:normalizedString"/>

	CodeListName
	namespace (URN)
2. position
Optional
	<xs:attribute name="CodeListName" type="xs:string"/>

	CodeListVersionID
	namespace (URN)
3. position
Mandatory
	<xs:attribute name="CodeListVersionID" type="xs:normalizedString"/>

	CodeListAgencyID
	namespace (URN)
4. position
Optional
	<xs:attribute name="CodeListAgencyID" type="xs:normalizedString"/>

	 CodeListAgencyName
	namespace (URN)
5. position
optional
	<xs:attribute name="CodeListAgencyName" type="xs:string"/>

	 CodeListURI
	namespace (URN)
6. position
optional
	<xs:attribute name="CodeListURI " type="xs:anyURI"/>

	 CodeListSchemeURI
	namespace (URN)
7. position
optional
	<xs:attribute name=" CodeListSchemeURI " type="xs:normalizedString"/>

	LanguageID
	
	<xs:attribute name=”LanguageID” type=”xs:language”/>

	CodeListNamespacePrefixID
	
	<xs:attribute name=” CodeListNamespacePrefixID” type=”xs:normalizedString”/>

	CodeListDescription
	
	<xs:attribute name=” CodeListDescription” type=”xs:string”/>

	CodeListCredits
	
	<xs:attribute name=” CodeListCredits” type=”xs:string”/>

4.3 Namespace URN (Future)
The following construct represents the construct for the URN of a code list, according OASIS URN:

urn:oasis:tc:ubl:codeList:<CodeList.Identification.Identifier>:<CodeList.Name.Text>:<CodeList.Version.Identifier>:<CodeList.AgencyIdentifier>:<CodeList.AgencyName.Text>:<CodeList.AgencyScheme.Identifier>:<CodeList.AgencySchemeAgency.Identifier>

The first four parameters are fixed by Uniform Resource Name (URN) [see RFC 2141] and OASIS URN [see RFC 3121]:

· urn --> leading token of URNs

· oasis --> registered namespace ID “oasis”

· tc --> Technical Committee Work Products

· ubl --> From Technical Committee UBL (Universal Business Language)

· The parameter “codeList” identifies the schema type “code list”.

· The following parameters from <Code List. Identifier> to <Code List. Agency Scheme Agency. Identifier> represents the specific code list supplementary components of the CCT codeType.

· Example:

urn:oasis:tc:ubl:codeList:ISO639:Language%20Code:3:ISO:International%20Standardization%20Organization::

4.4 Namespace Prefix

REWORD THIS. Namespace prefix could be freely defined. However, it is helpful for better understanding, to identity the code lists by a convention of namespace prefixes.

The prefix provides the namespace prefix part of the qualified name of each code list. It is recommended that this prefix should contain the information of the supplementary component <Code List. Identification Identifier> and if it is necessary for separation, the information of the supplementary component <Code List. Version. Identifier> separated by a dash “-“. All letters should be lower case.

Example:

iso639

iso639-3 (with version)

4.5 Code List Schema Generation
This section describes how to generate complete code list schemas from the data model of section 4.
4.5.1 Data model and example values

The code list model and supplementary components are listed in the following table. The first column contains the UBL name and the second column contains an example of the value(s) for that name. It is assumed that the UBL name is the proposed name for the schema element/attribute/simpleType/complexType etc….

The expressions ValueOf(<UBL Name>), and, {UBL Name}refer to the contents for a specific code list. The latter representation is used so that a substitution can be shown within the schema fragments generated.

	UBL Name
	Description
	Sample ValueOf(<UBL Name>)
≡
{UBL Name}

	Content
	A character string (letters, figures or symbols) that for brevity and/or language independence may be used to represent or replace a definitive value or text of an Attribute.
	<enumerated values>

	Name
	<enumerated value definitions> (if Content=”USD” then Name = “US Dollars”)
	The textual name of the code content.

	CodeListID
	The identification of a list of codes.
	ISO4217 Alpha

	CodeListAgencyID
	An agency that maintains one or more code lists.
	6

	CodeListAgencyName
	The name of the agency that maintains the code list.
	United Nations Economic Commission for Europe

	CodeListName
	The name of a list of codes.
	Currency

	CodeListVersionID
	The Version of the code list.
	0.3

	CodeListURI
	The Uniform Resource Identifier that identifies where the code list is located.
	http://www.bsi-global.com/Technical%2BInformation/Publications/_Publications/tig90x.doc

	CodeListSchemeURI
	The Uniform Resource Identifier that identifies where the code list scheme is located.
	urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-8-11

	LanguageID
	The identifier of the language used in the corresponding text string
	En

	CodeListNamespacePrefixID
	The namespace prefix recommended for this code list. Should be based on the CodeListID.
	 cur

	CodeListDescription
	Describes the set of codes
	The set of world currencies

	CodeListCredits
	Acknowledges the source and ownership of codes
	Derived from the ISO 4217 currency code list and used under the terms of the ISO policy stated at http://www.iso.org/iso/en/commcentre/pressreleases/2003/Ref871.html.

4.5.2 Schema to generate

This section describes the specific steps required to generate a schema from the above model. Each step shows two schema fragments – one that is a template for generating the schema, and, the second one that is an example schema generated. In the template sections, the places where values from the spreadsheet model are inserted are shown in braces, and are colored green –

e.g. “{CodeListAgencyID}” means substitute the value “6”.

4.5.3 Schema file name

The name of this schema file should be:

UBL-CodeList-{CodeListName}-{CodeListVersionID}.xsd
For example:

UBL-CodeList-CurrencyCode-1.0.xsd

4.5.3.1 Generate XML header

Template, Sample are the same:

	<?xml version="1.0" encoding="UTF-8"?>
<!--
 Universal Business Language (UBL) Schema 1.0-draft-10.1

 Copyright (C) OASIS Open (2004). All Rights Reserved.

 This document and translations of it may be copied and furnished to others, and

 derivative works that comment on or otherwise explain it or assist in its

 implementation may be prepared, copied, published and distributed, in whole or

 in part, without restriction of any kind, provided that the above copyright

 notice and this paragraph are included on all such copies and derivative works.

 However, this document itself may not be modified in any way, such as by

 removing the copyright notice or references to OASIS, except as needed for the

 purpose of developing OASIS specifications, in which case the procedures for

 copyrights defined in the OASIS Intellectual Property Rights document must be

 followed, or as required to translate it into languages other than English.

 The limited permissions granted above are perpetual and will not be revoked by

 OASIS or its successors or assigns.

 This document and the information contained herein is provided on an "AS IS"

 basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT

 LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT

 INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR

 A PARTICULAR PURPOSE.

 ===

 For our absent friend, Michael J. Adcock - il miglior fabbro

 ===

 Universal Business Language Specification

 (http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ubl)

 OASIS Open (http://www.oasis-open.org/)

 Schema generated by GEFEG EDIFIX v5.0-beta

 (http://www.gefeg.com/en/standard/xml/ubl.htm)

 Document Type: CurrencyCode

 Generated On: Fri Mar 26 14:30:20 2004

-->

4.5.3.2 Generate XML Schema header

Template:

	<xs:schema

targetNamespace=”{CodeListSchemeURI}”

 xmlns=”{CodeListSchemeURI}”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

elementFormDefault=”qualified” attributeFormDefault=”unqualified” version=”1:0-draft-7.1”>

Sample:

	<xs:schema

targetNamespace=”urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-7.1”

 xmlns=”urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-7.1”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

elementFormDefault=”qualified” attributeFormDefault=”unqualified” version=”1:0-draft-7.1”>

4.5.3.3 Generate abstract element (Future)

Template:

	<xs:element name="{CodeListName}Abstract" type="xs:string" abstract="true"/> {i would prefer to make the meaning of this clear}

Sample:

	<xs:element name="CurrencyCodeAbstract" type="xs:normalizedString" abstract="true"/>

4.5.3.4 Generate simple type to contain the enumerated values

Template:

	
<xs:simpleType name=”{CodeListName}ContentType”>

<xs:restriction base=”xs:string”>

<xs:enumeration value=”{first Content}”

 <xs:annotation>

 <xs:documentation>

 <CodeName>{first Name}”</CodeName>

 </xs:documentation>

 </xs:annotation>

 </xs:enumeration>

 …

<xs:enumeration value=”{last Content}”

 <xs:annotation>

 <xs:documentation>

 <CodeName>{last Name}”</CodeName>

 </xs:documentation>

 </xs:annotation>

 </xs:enumeration>

</xs:restriction>

</xs:simpleType>

Sample:

	
<xs:simpleType name=”CurrencyCodeContentType”>

<xs:restriction base=”xs:string”>

<xs:enumeration value=”AED”>

<xs:annotation>

<xs:documentation>

<CodeName>UAE Dirham</CodeName>

</xs:documentation>

</xs:annotation>

</ xs:enumeration>

<xs:enumeration value=”ALL”>

<xs:annotation>

<xs:documentation>

<CodeName>Albanian Lek</CodeName>

</xs:documentation>

</xs:annotation>

</xs:xs:enumeration>

<xs:enumeration value=”AMD”

<xs:annotation>

<xs:documentation>

<CodeName>Armenian Dram</CodeName>

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value=”ANG”/>

<xs:enumeration value=”AOA”/>

<xs:enumeration value=”XDR”/>

 …

<xs:enumeration value=”ZAR”/>

<xs:enumeration value=”ZMK”/>

<xs:enumeration value=”ZWD”/>

</xs:restriction>

</xs:simpleType>

4.5.3.5 Generate complex type to hold enumerated values and supplemental components

Template:

	
<xs:complexType name="{CodeListName}Type">

<xs:annotation>

<xsd:documentation>

<ccts:Component>

<ccts:ComponentType>DT</ccts:ComponentType>

<ccts:DictionaryEntryName>Code. Type</ccts:DictionaryEntryName>

<ccts:RepresentationTerm>Code</ccts:RepresentationTerm>

<ccts:DataTypeQualifier>Currency</ccts:DataTypeQualifier>

<ccts:DataType>Code. Type</ccts:DataType>

</ccts:Component>

<ccts:Instance>

<ccts:CodeListID>{CodeListID}</ccts:CodeListID>

<ccts:CodeListAgencyID>{CodeListAgencyID}</ccts:CodeListAgencyID>

<ccts:CodeListAgencyName>{CodeListAgencyName}</ccts:CodeListAgencyName>

<ccts:CodeListName>{CodeListName}</ccts:CodeListName>

<ccts:CodeListVersionID>{CodeListVersionID}</ccts:CodeListVersionID>

<ccts:CodeListUniformResourceID>{CodeListURI}</ccts:CodeListUniformResourceID>

<ccts:CodeListSchemeUniformResourceID>{CodeListSchemeURI}

</ccts:CodeListSchemeUniformResourceID>

<ccts:LanguageID>{LanguageID}</ccts:LanguageID>

</ccts:Instance>

</xsd:documentation>

</xs:annotation>

<xs:simpleContent>

<xs:extension base="{CodeListName}ContentType">

<xs:attribute name="name" type="xs:string" use="optional"/> ?????????

<xs:attribute name="codeListID" type="xs:normalizedString" fixed="{CodeListID}"/>

<xs:attribute name="codeListAgencyID" type="xs:normalizedString"

fixed="{CodeListAgencyID}"/>

<xs:attribute name="codeListAgencyName" type="xs:normalizedString"

fixed="{CodeListAgencyName}"/>

<xs:attribute name="codeListName" type="xs:string" fixed="{CodeListName}">

<xs:attribute name="codeListVersionID" type="xs:string"

fixed="{CodeListVersionID}"/>

<xs:attribute name="codeListURI" type="xs:anyURI" fixed="{CodeListURI}">

<xs:attribute name="codeListSchemeURI" type="xs:anyURI"

fixed="{CodeListSchemeURI}">

<xs:attribute name="languageID" type="xs:language" fixed="{LanguageID}">

</xs:extension>

</xs:simpleContent>

</xs:complexType>

Sample:

	
<xs:complexType name="CurrencyCodeType">

<xs:annotation>

<xsd:documentation>

<ccts:Component>

<ccts:ComponentType>DT</ccts:ComponentType>

<ccts:DictionaryEntryName>Code. Type</ccts:DictionaryEntryName>

<ccts:RepresentationTerm>Code</ccts:RepresentationTerm>

<ccts:DataTypeQualifier>Currency</ccts:DataTypeQualifier>

<ccts:DataType>Code. Type</ccts:DataType>

</ccts:Component>

<ccts:Instance>

<ccts:CodeListID>ISO 4217 Alpha</ccts:CodeListID>

<ccts:CodeListAgencyID>6</ccts:CodeListAgencyID>

<ccts:CodeListAgencyName>United Nations Economic Commission for Europe</ccts:CodeListAgencyName>

<ccts:CodeListName>Currency</ccts:CodeListName>

<ccts:CodeListVersionID>0.3</ccts:CodeListVersionID>

<ccts:CodeListUniformResourceID>

http://www.bsi-global.com/Technical%2BInformation
/Publications/_Publications/tig90x.doc </ccts:CodeListUniformResourceID>

<ccts:CodeListSchemeUniformResourceID>

urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-10.1

</ccts:CodeListSchemeUniformResourceID>

<ccts:LanguageID>en</ccts:LanguageID>

</ccts:Instance>

</xsd:documentation>

</xs:annotation>

<xs:simpleContent>

<xs:extension base="CurrencyCodeContentType">

<xsd:attribute name="name" type="xsd:string" use="optional"/>

<xsd:attribute name="codeListID" type="xsd:normalizedString" use="optional"

fixed="ISO 4217 Alpha"/>

<xsd:attribute name="codeListAgencyID" type="xsd:normalizedString" use="optional"

fixed="6"/>

<xsd:attribute name="codeListAgencyName" type="xsd:string" use="optional"

fixed="United Nations Economic Commission for Europe"/>

<xsd:attribute name="codeListName" type="xsd:string" use="optional"

fixed="Currency"/>

<xsd:attribute name="codeListVersionID" type="xsd:normalizedString" use="optional"

fixed="0.3"/>

<xsd:attribute name="codeListURI" type="xsd:anyURI" use="optional"

fixed="http://www.bsi-global.com/

Technical%2BInformation/Publications/_Publications/tig90x.doc"/>

<xsd:attribute name="codeListSchemeURI" type="xsd:anyURI" use="optional"

fixed="urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-10.1"/>

<xsd:attribute name="languageID" type="xsd:language" use="optional" fixed="en"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

4.5.3.6 Generate global attributes to allow usage of code lists as an attribute (Future)

Template:

	
<xs:attribute name=”{CodeListName}” type=”{CodeListName}ContentType”/>

<xs:attribute name=”codeListID” type=”xs:normalizedString” fixed=”{CodeListID}”/>

<xs:attribute name=”codeListAgencyID” type=”xs:normalizedString ” fixed=”{CodeListAgencyID}”/>

<xs:attribute name=”codeListAgencyName” type=”xs:string”

fixed=”{CodeListAgencyName}”/>

<xs:attribute name=”codeListVersionID” type=”xs:normalizedString ” fixed=”{CodeListVersionID}”/>
<xs:attribute name=”codeListName” type=”xs:string ” fixed=”{CodeListName}”/>

<xs:attribute name=”name” type=”xs:normalizedString ” fixed=”{name}”/>

<xs:attribute name=”codeListURI” type=”xs:anyURI” fixed=”{CodeListURI}”/>

<xs:attribute name=”codeListSchemeURI” type=”xs:anyURI” fixed=”{CodeListSchemeURI}”/>

<xs:attribute name=”languageID” type=”xs:normalizedString ” fixed=”{LanguageID}”/>

Sample:

	
<xs:attribute name=”CurrencyCode” type=”CurrencyCodeContentType”/>

<xs:attribute name="name" type="xs:normalizedString" fixed="cur"/>

<xs:attribute name=”codeListID” type=”xs:normalizedString” fixed=”ISO 4217 Alpha”/>

<xs:attribute name=”codeListAgencyID” type=”xs:normalizedString ” fixed=”6”/>

<xs:attribute name=”codeListAgencyName” type=”xs:string ”

fixed=”United Nations Economic Commission for Europe”/>

<xs:attribute name=”codeListVersionID” type=”xs:normalizedString ” fixed=”0.3”/>

<xs:attribute name="codeListName" type="xs:string" fixed="CurrencyCode"/>

<xs:attribute name="codeListURI" type="xs:anyURI"

fixed="http://www.bsi-global.com/Technical%2BInformation/Publications/_Publications/tig90x.doc"/>

<xs:attribute name="codeListSchemeURI" type="xs:anyURI"

 fixed="urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-8-1"/>

<xs:attribute name="languageID" type="xs:language" fixed="en"/>

4.5.3.7 Generate global element to allow usage of code list as an element (Future)

Template:

	<xs:element name=”{CodeListName}” type=”{CodeListName}Type” substitutionGroup=”{CodeListName}Abstract”/>

Sample:

	<xs:element name=”CurrencyCode” type=”CurrencyCodeType”

substitutionGroup=”CurrencyCodeAbstract”/>

4.5.3.8 End of schema

Template:

	</xs:schema>

Sample:

	</xs:schema>

4.6 Code List Schema Usage

For every code list, there exists a specific code list schema. This code list schema must have a targetNamespace with the UBL specific code list namespace and have a prefix with the code list identifier itself.

The element in the code list schema can be used for the representation as a global declared element in the document schemas. The name of the element is the UBL tag name of the specific BIE for a code.

The simpleType represents the possible codes and the characteristics of the code content. The name of the simpleType must be always ended with “. Content”. Within the simpleType is a restriction of the XSD built-in data type “xs:token”. This restriction includes the specific facets “length”, “minLength”, “maxLength” and “pattern” for regular expressions to describe the specific characteristics of each code list.

Each code will be represented by the facet “enumeration” after the characteristics. The value of each enumeration represents the specific code value and the annotation includes the further definition of each code, like “Code. Name”, “Language. Identifier” and the description.

The schema definitions to support this might look as follows:
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

targetNamespace="urn:oasis:ubl:codeList:ISO3166:Locale%20Code:3:5:ISO::"
xmlns:iso3166="urn:oasis:ubl:codeList:ISO3166: Locale%20Code:3:5:ISO::"
xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="LocaleCodeTypeA" type="xs:token"

 abstract="true">

 <xs:annotation>

 <xs:documentation>

An abstract place holder for a code list element

 </xs:documentation>

 </xs:annotation>

</xs:element>

<xs:simpleType name="LocaleCodeContentType">

 <xs:restriction base="xs:token">

 <xs:enumeration value="DE"/>

 <xs:enumeration value="FR"/>

 <xs:enumeration value="US"/>

 . . .

 </xs:restriction>

</xs:simpleType>

<xs:complexType name="LocaleCodeType">

 <xs:annotation>

 <xs:documentation>

 <ccts:Instance>

 <!-- Data and values stored in this space

 are meant for instance-processing purposes, and are

 non-normative. -->

 <ccts:Prefix>loc</ccts:Prefix>

 <ccts:CodeListQualifier>LocaleCode</ccts:CodeListQualifier>

 <ccts:CodeListAgency>ISO3166</ccts:CodeListAgency>

 <ccts:CodeListVersion>0.3</ccts:CodeListVersion>

 </ccts:Instance>

 </xs:documentation>

 </xs:annotation>

 <xs:simpleContent>

 <xs:extension base=" LocaleCodeType">

 <xs:attribute name="CodeListID" type="xs:token" fixed="ISO3166"/>

 <xs:attribute name="CodeListAgencyID" type="xs:token" fixed="6"/>

 <xs:attribute name="CodeListVersionID" type="xs:string" fixed="0.3"/>

 . . . additional optional attributes

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

<xs:element name="LocaleCode" type="LocaleCodeType"

substitutionGroup="LocaleCodeTypeA">

 <xs:annotation>

 <xs:documentation>

A substitution for the abstract element based

on aStdEnum

 </xs:documentation>

 </xs:annotation>

</xs:element>

<xs:attribute name="{Code.name}" type="{Code.name}ContentType">

 <xs:annotation>

 <xs:documentation>

A global attribute for use inside an element

 </xs:documentation>

 </xs:annotation>

< xs:attribute/>

</xs:schema>

4.7 Instance

The enumerated list method results in instance documents with the following structures.

<LocaleCode>US</LocaleCode>

<iso3166:LocaleCode>US</iso3166:LocaleCode>

<PostCode iso3166:LocaleCode="FQ">20878</PostCode>

4.8 Deriving New Code Lists from Old Ones (future)
In order to promote maximum reusability and ease code lists maintenance, code list designers are expected to build new code lists from existing lists. They could for example combine several code lists or restrict an existing code list.

These new code lists must be usable in UBL elements the same manner the “basic” code lists are used.

4.8.1 Extending code lists

The base schema shown above could be extended to support new codes as follows:

<xs:schema targetNamespace="cust"

 xmlns:std="std"

 xmlns="cust"

 xmlns:cust="custom"

 xmlns:xs=http://www.w3.org/2001/XMLSchema
 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

<xs:import namespace="std"

 schemaLocation="D:_PROJECT\NIST\XMLSchema\test0513\std.xsd"/>

<xs:element name="LocaleCode" substitutionGroup="std:LocaleCodeA">

 <xs:annotation>

 <xs:documentation>A substitute for the abstract LocaleCodeA

 that extends the enumeration

 </xs:documentation>

 </xs:annotation>

 <xs:simpleType>

 <xs:union memberTypes="std:aStdEnum">

 <xs:simpleType>

 <xs:restriction base="xs:token">

 <xs:enumeration value="IL"/>

 <xs:enumeration value="GR"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:union>

 </xs:simpleType>

</xs:element>

</xs:schema>

4.8.2 Restricting code lists

The base schema shown above could be restricted to support a subset of codes as follows:

<xs:import namespace="std"

 schemaLocation="D:_PROJECT\NIST\XMLSchema\test0513\std.xsd"/>

<xs:element name="LocaleCode" substitutionGroup="std:LocaleCodeA">

 <xs:annotation>

 <xs:documentation>

 A substitute for the abstract LocaleCodeA that restricts

 the enumeration

 </xs:documentation>

 </xs:annotation>

 <xs:simpleType>

 <xs:restriction base="xs:token">

 <xs:enumeration value="DE"/>

 <xs:enumeration value="US"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

5 Conformance to UBL Code Lists (future)
This section is for Producers of Code Lists outside of UBL. These lists could be owned by a number of different types of organizations.

We probably need a Conformance section in this document so that code list producers (who, in general, won’t be UBL itself) will know how/when to claim conformance to the requirements (MUST) and recommendations (SHOULD/MAY) in this specification. This spec is not for the UBL TC, but for code list producers (which may occasionally include UBL itself).
6 References

[3166-XSD]
UN/ECE XSD code list module for ISO 3166-1,
[CCTS1.9]
UN/CEFACT Draft Core Components Specification, Part 1, 11 December, 2002, Version 1.9.

[CLSC]
OASIS UBL Code List Subcommittee. Portal: http://www.oasis-open.org/committees/sc_home.php?wg_abbrev=ubl-clsc . Email archive: http://lists.oasis-open.org/archives/ubl-clsc/.

[SPENCER]
http://www.oasis-open.org/apps/org/workgroup/ubl-clsc/download.php/5195/Spencer-CodeList-PositionPaper1-0.pdf
[STUHEC]
<need reference>
[COATES]
http://www.oasis-open.org/apps/org/workgroup/ubl-clsc/download.php/4522/draft-coates-codeListDataModels-0p2.doc
[CLTemplate]
OASIS UBL Naming and Design Rules code list module template, http://www.oasis-open.org/committees/ubl/ndrsc/archive/.

[eBSC]
“eBusiness Standards Convergence Forum”, http://www.nist.gov/ebsc.

[eBSCMemo]
M. Burns, S. Damodaran, F.Yang, “Draft Code List Implementation description”, http://www.oasis-open.org/apps/org/workgroup/ubl-clsc/download.php/4503/nistTOUbl20031119.zip
[NDR]
M. Cournane et al., Universal Business Language (UBL) Naming and Design Rules, OASIS, 2002, http://www.oasis-open.org/committees/ubl/ndrsc/archive/wd-ublndrsc-ndrdoc-nn/.

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[CL5]
http://www.oasis-open.org/apps/org/workgroup/ubl-clsc/download.php/4502/wd-ublndrsc-codelist-05_las_20030702.doc

[ISO 11179]
<need reference>
[UBL1-SD]
http://ibiblio.org/bosak/ubl/UBL-1.0/art/UBL-1.0-SchemaDependency.jpg
[UNTDED 3055]
<need reference>

[XSD]
XML Schema, W3C Recommendations Parts 0, 1, and 2. 2 May 2001. http://www.unece.org/etrades/unedocs/repository/codelist.htm.

Appendix A. Revision History

	Revision
	Editor
	Description

	2004-01-13
	Marty Burns
	First complete version converted from NDR revision 05

	2004-01-14
	Marty Burns
	Minor edit of chapter heading 3 & 4

	2004-01-20
	Marty Burns
	Incorporated descriptions from AS and KH

	2004-02-06
	Marty Burns
	Cleaned up requirements and other sections – removed some redundant content from merge of contributions. Explicitly identified Data Model and Metadata models separately from XML representations of the same.

	2004-02-11
	Marty Burns
	Added comments from 2/11 conference call

	2004-02-29
	Marty Burns
	Added resolutions from February Face to Face meeting

	2004-03-03
	Marty Burns
	Incorporated Tim McGrath’s corrections of data model

	2004-03-09
	Marty Burns
	Addressed Eve Maler’s comments
Addressed Tony Coates comments
Addressed 2004-03-03 telecon comments
Added some elaboration of the model usage in ubl

	2004-03-15
	Marty Burns
	Added example mapping schema paper to section 4.6

	2004-03-23
	Marty Burns
	Added data model for supplementary components,
Marked future features for UBL 1.1 as (future)
Added comment about UBL1.0 release vs. future.

	2004-04-01
	Marty Burns
	Clean up for UBL version 1.0

	2004-04-14
	Marty Burns
	Incorporated suggested edits from GKH

Appendix B. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2004. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

