26

31

ol

Universal Business Language (UBL)
Code List Representation

Version: 1.0 20 april 2004
Document identifier:
WD-UBLCLSC-CODELIST-20040420

Location:

Editor:

http://www.oasis-open.org/committees/ubl/

Marty Burns for National Institute of Standards and Technology, NIST, burnsmarty@aol.com

Contributors:

Anthony Coates abcoates@londonmarketsystems.com
Mavis Cournane mavis.cournane@cognitran.com
Suresh Damodaran Suresh_Damodaran@stercomm.com
Anne Hendry anne.hendry@sun.com

G. Ken Holman gkholman@CraneSoftwrights.com
Serm Kulvatunyou serm@nist.gov

Eve Maler eve.maler@sun.com

Tim McGrath tmcgrath@portcomm.com.au

Mark Palmer mark.palmer@nist.gov

Sue Probert sue.probert@dial.pipex.com

Lisa Seaburg Iseaburg@aeon-lic.com

Paul Spencer paul.spencer@boynings.co.uk

Alan Stitzer alan.stitzer@marsh.com

Frank Yang Frank.Yang@RosettaNet.org

Abstract:

Status:

This specification provides rules for developing and using reusable code lists. This specification
has been developed for the UBL Library and derivations thereof, but it may also be used by other
technologies and XML vocabularies as a mechanism for sharing code lists and for expressing
code lists in W3C XML Schema form.

This document was developed by the OASIS UBL Code List Subcommittee [CLSC]. Your
comments are invited. Members of this subcommittee should send comments on this
specification to the ubl-clsc@lists.oasis-open.org list. Others should subscribe to and send
comments to the ubl-comment@lists.oasis-open.org list.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights (OASIS-IPR) section of the Security Services TC web page
(http://'www.oasis-open.org/who/intellectualproperty.php

40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

Table of Contents

BT o] (SN0l Oo] 1 (=] o1 £ TP PP PP PPPPPN 2
1 T oo [N Lot 1 o] o R TP PP P PP PPPPPTPPPPPP 4
1.1 ADOUL thE CUITENT VEISION ...eeiiitiiee it ettt ettt ettt e ekt e et e e e st et e e e aab e e e e anbr e e e s an e e e e nnreeeeennes 4
S Tote] oI TaTo YU (o [T oot TR PPPTP 5
1.3 Terminology and NOTALIONcoiiieiiiiiiie ettt e e e e e e bbb e e e e e e e e sanbbeeeeaeeesannnnreees 5
2 RequiremMents fOr COOE LISESccoiiuiiiiiiiiie ettt e e e e ettt e e e e e e e sanbb e e e e e e e e eannrereees 6
2.0 OVEIVIBW ettt ettt ettt etk e ettt e et e e e et e R et e ekt e 4Rt ese e e e Rt e Rt e e R et e e e Rt e eRe e e R e e e e e nare s 6
2.2 Use and management Of COOE LiStS.......uuuiiiiiiiiiiiiiiiiie s ccie e e s st e e e e e e s ee e e e e e s ennnnreeeeeeseannes 6
2.2.1 [R1] First-order business information ENtitIESccviiiciiiiiiiee e 6
2.2.2 [R2] Second-order business information eNtitieS..........cc.uuvviiieeiiiiciiiieeee e 6
2.2.3 [R3] Data and Metadata model separate from Schema representation............ccccccceevvvicvvennnnnn. 7
2.2.4 [R4] XML and XML Schema repreSENtationuecciiiiciiriieeeeessssiiieieeeeeessssnsseeeseeessssnnnsnneesees 7
2.2.5 [R5 (Future)] Machine readable data MOdel.............ooooiiiiiiiii e 7
2.2.6 [R6 (Future)] Conformance test for COAe liStS........ouuiiiiiiiiiiaa e 7
2.2.7 [R6a] Supplementary components available in instance documents...........ooccvvieeeieeiiiiiiiieeeeenn. 7
2.3 TYPES OF COUE ISS ..eiiiiiiiiiiie ettt e ettt e e e e e e e e a b bt e e e e e e e e e anbbeeeeeassnnbabeeeeaaeaeanns 8
2.3.1 [R7] UBL maintain€d CO0E LIStuuiiiieeiiiiiiiiiiiee e e csietr e e e e s s st e e e e e e e s ssnnsbaa e e e e e e e s snnnnraneeaeeees 8
2.3.2 [R8] Identify and use external standardized cOde liStS........cceeiviiiiiiiiiiiee e 8
2.3.3 [RI] Private USE COUR lISt.....ciiiiiiiiiiiiiiiee ettt e e e e e s et e e e e e e e e nnbeneeaaae s 8
2.4 Technical requirements Of COOE LiStS........uiiiiiiiiiiiiiiiiie e e e e e e e e e e s enrraaeeee e e e e aanes 8
2.4.1 [R10] SEMANTIC ClATILYuvevieeieee e e ittt ee e e e e e e e e s e e r e e e e e s e st e e e e e e s e s nntanaeeeeeesennnnrnnneeeees 8
b | = I I L =T o] 0 1= = 111 PR 8
2.4.3 [R12] EXternal MaINtENANCEccoiocuviieiiiee e e e ittt e e e e e e s st e e e e e e s s st ae e e e e e e s s snntaaeeeeeeesssnnnteneeaees 8
2.4.4 [RL3] ValIdAtabilitycoe ettt e e e e e et e e e reaae s 9
2.4.5 [R14] Context rules frIENAIINESS.........uuiiiiiiie ettt a e e e e e e e e s eneeaaae s 9
2.4.6 [RA5] UPGradabilityc...ueeeeiieiieiiie ettt e e e e e e e e e e e eaeeaaa s 9
2.4.7 [R16] REAAADIILY ...ceeeieiiieiiee ettt e ettt e e e e e e s bbb e e e e e s e aannbeeeeeaae s 9
2.4.8 [R17] Code lists must be unambiguously identified...............oeoiiiriiii e 9
2.4.9 [R18 (Future)] Ability to prevent extension or modification............ccccviiiiiiiii e, 9
2.5 Design Requirements of Code List Data MOEl..........cccoiiiiiiiiiiiie e e e 9
2.5.1 [R19] A list of the values (codes) for @ COAe liStceiiiiiiiiiiiieee e 9
2.5.2 [R20 (Future)] Multiple lists of equivalents values (codes) for a code list.........ccccceeevviiiriennnnnn. 9
2.5.3 [R21] Unique identifiers for a Code liSt...........ooouiiiriie i e e 10
2.5.4 [R22] Unique identifiers for individual values of @ code liStccccvveeiieeiiiiiiiieieee e, 10

2.5.5 [R23] NamMeES fOr @ COUE ISt ...evieiiiiiiiiiiiiie e e e s e e e e e snnaeeeeaee s 10

76
77
78
79
80

81
82

83

84
85

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

2.5.6 [R24] Documentation for @ COUE IStuieeiiiiiiiiiiiei e e e e 10

2.5.7 [R25] Documentation for individual values of a code liSt...........c.cccoviiiiicnic i 10
2.5.8 [R26 (Future)] The ability to import, extend, and/or restrict other code liStsccccoovvvvieenne 10
2.5.9 [R27 (Future)] Support for describing code lists that cannot be enumerated................cc.ccc...... 10
2.5.10 [R28 (Future)] Support for references to equivalent code liStS...........cccccovviiieiiiiiee e 10
2.5.11 [R29 (Future)] Support for individual values to be mapped to equivalent values in other code
] TP PP PP PPN 10
2.5.12 [R30 (Future)] Support for users to attach their own metadata to a code list............cccvveeeeen. 11
2.5.13 [R31 (Future)] Support for users to attached their own metadata to individual values of a code
] PSPPSR 11
2.5.14 [R32 (Future)] Support for describing the validity period of the valuesccccccovvcvvieeneeenn. 11
2.5.15 [R33] Identifier for UN/CEFACT DE 3055.cooiiiiiiiiiiiiie et 11
3 Data and Metadata Model fOr COUE LISIScccviiiiiiiiiieirie e 12
3.1 Data MOl DEFINILIONciiiiiieieiiie ittt nn e s s ne e e 12
3.2 Supplementary Components (Metadata) Model Definitionccccieeiieeiiiiieinee e 12
3.3 EXAMPIES OF USE ...ttt oottt e e e e e st e bt e e e e e e e s snne bt e e e e e e e e annbebeeaaaaeaeann 13
4 XML Schema representation Of COAE LISESuciiiiiiiiiiiiiiiia e 15
v D F = WY (oo (=AY F=T o] o] oo [T UUROPRPPPI 16
4.2 Supplementary CompoNents MapPPiNg..........ceuaaaiiiiueiieeia ettt e e e e e e e e e e s sbbereeeaaeeeasnbreaeeaaaas 17
4.3 NamMESPACE URN (FULUIE)eiieiiiieeeeiitte ettt e e e et e e e e e e s st b be e e e e e e e e sanbeeeaaaeeas 18
4.4 NAMESPACE PrefiX .. .uuiiiiiiiiiiiiii ittt e e e e e ettt e e e e e s e bbb b e e e e e e s e annnbeeeeaaaens 18
4.5 Code List SChemMa GENEIALIONciiriiiieieiiie it sre e s e e sneennee e 19
4.5.1 Data model and eXample VAIUESccuuviiiiiee et e e e e st r e e e e s et e e e e e e e e ennnees 19
NS To] 1= 10 0 b= (o 0 =Y 1= - - R 20
4.5.3 SChEM@A fIlE NMAME ... 20
4.6 Code LiSt SChEMA USAQEccuveiiiiiiee i et ee e s s sttt e e e s e st e e e e e e s e st e e e aeeesannsnbeneeeaeeeanntnnneeaeens 25
A 111 r= 1 o] PP PR PPPPPPRI 27
4.8 Deriving New Code Lists from Old ONES (fULUIE)coiiiiiiiiiiiiiiieiee e 27
4.8.1 EXIENAING COAR TISES ...eiiiiiiiiiiiiiiii ettt e e e e e ettt e e e e e e e e e anbbe e e e e e e e snnnneeees 27
4.8.2 RESICHNG COUR lISES ...ttt ettt e e e e et e e e e e e e s aabbee e e e e e e sanneneees 28
5 Conformance to UBL Code LiStS (FULUIE)iiiiiiiiiiieie ettt a e 29
6 RETEIENCES. ...ttt e bt e s bbbt e s s et e s e bt e e n et e e s 30
APPENIX A. REVISION HISTOMY ..ot iiiiieii ettt e e s e s e e e e e e s et e e e e e e e s ansnteeaeeeeeeanstnnnneeaeeesannns 31
APPENAIX B. INOLICES ...ttt e e e e s e e e e e s s st eeeeee e s s s teteeeeeeeassnsteseeeesssnnstennneeaeennnnnns 32

111

112
113
114
115

116
117
118
119
120
121

122
123
124
125

126
127
128

129
130

131
132
133
134
135

136
137

138
139
140
141

142

143
144
145
146
147

148
149
150

1 Introduction

Trading partners utilizing the Universal Business Language (UBL) must agree on restricted sets of coded
values, termed "code lists", from which values populate particular UBL data fields. Code lists are
accessed using many technologies, including databases, programs and XML. Code lists are expressed
in XML for UBL using W3C XML Schema for authoring guidance and processing validation purposes.

It is important to note that XML schema languages are not purely abstract data models. They provide
only a particular representation of the data. In addition, there are many roughly equivalent design choices
(e.g. elements versus attributes). The underlying logical model is obscured, and can be difficult to
extract. Therefore, XML schema languages are principally useful as a way of specifying rules to an XML
validation engine. Database schemas and programming language class models would have their own
specific representations of the logical data models.

A good logical data model format should allow the information about code lists to be expressed in a
format that is as simple and unambiguous as possible. To maximize the abstraction on one hand, and the
utility of the code list representations on the other, this document first derives an abstract data model of a
code list, and then, an XMLSchema representation of that data model.

The document begins with a section expositing the requirements adopted by the committee in order to
make certain that design follows requirements. These requirements were used to steer the design
choices elected in the balance of the document.

This specification was developed by the OASIS UBL Code List Subcommittee [CLSC] to provide rules for
developing and using reusable code lists expressed using W3C XML Schema [XSD] syntax.

The contents combine requirements and solutions previously developed by UBL'’s Library, Naming, and
Design Rules subcommittee [CL5], the work of the National Institute of Standards “eBusiness Standards
Convergence Forum” [eBSC] with contributions from Frank Yang and Suresh Damodaran of Rosettanet
[eBSCMemo], and position papers by Anthony Coates [COATES], Gunther Stuhec [STUHEC], and Paul
Spencer [SPENCER].

The data model attempts to be sufficiently general to be employable with other technologies in other
scenarios that are outside the scope of this committee's work. This specification is organized as follows:

» Section 2 provides requirements for code lists;
» Section 3 provides a data and metadata model of code lists;
* Section 4 is an XMLSchema representation of the model;

» Section 5 is the recommendations for code producers and the compliance rules.

1.1 About the current version

The Code List model described in this paper for UBL 1.0 has laid much of the groundwork for extensible
code lists. It includes an extensibility mechanism based on XSD substitution groups that has not been
adopted for UBL 1.0 but will serve as a starting point for work on a code list extension mechanism for
UBL 1.1. The current specification places a priority on uniformity of code list metadata independent of the
mechanism eventually adopted for code list extension.

The balance of this document presents a comprehensive model of code list data. Those features that are
to be considered for adoption in UBL 1.1 are labeled "(Future)". They appear in the context of their
proposed use in order to present a solution that meets all the requirements identified herein for code lists,

151
152

153
154

155

156
157
158
159
160
161

162
163

164

165
166
167

168
169

170
171

172

173
174

175
176

177
178

but it should be understood that they represent proposals as this point and are subject to change in light
of further discussions.

Persons wishing to engage in the further evolution of this specification are urged to join the OASIS
Universal Business Language Technical Committee (http://oasis-open.org/).

1.2 Scope and Audience

The rules in this specification are designed to encourage the creation and maintenance of code list
modules by their proper owners as much as possible. It was originally developed for the UBL Library and
derivations thereof, but it is largely not specific to UBL needs; it may also be used with other XML
vocabularies as a mechanism for sharing code lists in XSD form. If enough code-list-maintaining agencies
adhere to these rules, we anticipate that a more open marketplace in XML-encoded code lists will emerge
for all XML vocabularies.

This specification assumes that the reader is familiar with the UBL Library and with the ebXML Core
Components [CCTS1.9] concepts and ISO 11179 [ISO 11179] concepts that underlie it.

1.3 Terminology and Notation

The text in this specification is normative for UBL Library use unless otherwise indicated. The key words
must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this
specification are to be interpreted as described in [RFC2119].

Terms defined in the text are in bold. Refer to the UBL Naming and Design Rules [NDR] for additional
definitions of terms.

Core Component names from ebXML are in italic.
Exanpl e code |istings appear |ike this.

Note: Non-normative notes and explanations appear like this.

Conventional XML namespace prefixes are used throughout this specification to stand for their respective
namespaces as follows, whether or not a namespace declaration is present in the example:

The prefix xs: stands for the W3C XML Schema namespace [XSD].
The prefix xht ml : stands for the XHTML namespace.

The prefix i s03166: stands for a namespace assigned by a fictitious code list module for the ISO 3166-
1 country code list.

179

180
181

182

183
184
185
186
187

188
189
190

191
192
193
194
195

196

197
198
199
200
201

202

203
204
205
206

207

208

209
210
211
212

213

2 Requirements for Code Lists

“There can be no solution without a requirement!”

This section summarizes the requirements to be addressed by this paper.

2.1 Overview

The rules in this specification are designed to encourage the creation and maintenance of code list
modules by their proper owners as much as possible. It was originally developed for the UBL Library and
derivations thereof, but it is largely not specific to UBL needs; it may also be used with other vocabularies
as a mechanism for sharing code lists. If enough code-list-maintaining agencies adhere to these rules, we
anticipate that a more open marketplace in code lists will emerge for all vocabularies.

The goal is to provide a representation for code lists that are extensible, restrictable, traceable, and
cognizant of the need for code lists to be maintained by various organizations who are authorities on their
content.

Note that the code list mechanism of this specification needs to support all of the requirements in this
section. However, any single code list based on this specification may not be required to meet all
requirements simultaneously. The appropriate subset of requirements that a given code list must support
is summarized in the use cases presented in the conformance section (5 Conformance to UBL Code
Lists).

2.2 Use and management of Code Lists

This section describes requirements for the use and management of code lists. Requirements are
identified in the heading for each one as: [Rn], where ‘n’ is the requirement number. This draft contains
requirements that have been accumulated for code lists in general. In order to allow for the interim
publishing of this specification, several of the requirements have been labeled as future requirements: [Rn
(Future)]

2.2.1 [R1] First-order business information entities

Code list values may appear as first-order business information entities (BIEs). For example, one property
of an address might be a code indicating the country. This information appears in an element, according
to the Naming and Design Rules specification [NDR]. For example, in XML a country code might appear
as:

<Count r y>UK</ Count r y>

2.2.2 [R2] Second-order business information entities

Code list values may appear as second-order information that qualifies another BIE. For example, any
information of the Amount core component type must have a supplementary component (metadata)
indicating the currency code. For example, in XML a currency code might appear as an attribute — the
value of element Currency is 2456000; the code EUR describes that these are in Euros:

<Currency code="EUR’>2456000</ Currency>

214

215
216
217

218
219
220
221

222
223
224
225

226
227
228
229
230

231

232
233
234

235

236
237
238
239
240

241

242
243

244

245
246
247
248

249
250
251

252
253
254

2.2.3 [R3] Data and Metadata model separate from Schema representation

Since all uses of code lists will not be exclusively within the XML domain — ie. Databases, etc..., itis
desirable to separate the description of the data model from its XML representative form. This will
facilitate use for other purposes of the semantically identical information.

The current UBL code list documents speak of other XML specifications re-using UBL's code list
Schemas. While this may occur, there are already many specifications whose use of XML is sufficiently
different from UBL's that re-use of UBL Schemas (or Schema fragments) is not an option. That does not
mean that those other specifications cannot be interoperable with UBL at the code list level.

Code list interoperability comes about when different specifications or applications use the same
enumerated values (or aliases thereof) to represent the same things/concepts/etc. Sharing XML
schemas (or fragments) is one way of achieving this, but it is not a necessary method for achieving this
goal.

Broader interoperability can be achieved instead by defining a format which models code lists
independently of any validation or choice mechanisms that they may be used with. Such a data model
should be able to be processed to produce the required XML Schemas, and should also be able to be
processed to produce other artifacts, e.g. Java type-safe enumeration classes, database Schemas, code
snippets for HTML forms or XForms, etc.

2.2.4 [R4] XML and XML Schema representation

The principal anticipated use of the code list model will be in XML application — XML for usage, and
XMLSchema for validation of instance documents. This paper should realize a proper XML / XMLSchema
representation for the code list model.

2.2.5 [R5 (Future)] Machine readable data model

A data model is an abstraction and it must be converted to explicit representation for use. The principal
such use anticipated by this effort is that of XML data exchange. A machine readable representation of
the data model makes the lossless(??) transfer of all meaning to the representation of choice easier since
it can be automated. It is therefore desirable that the data model be expressed in a machine readable
form.

2.2.6 [R6 (Future)] Conformance test for code lists

An abstract model for code lists requires a method to ensure conformance and consistency of the
rendering of instance Schemas based on the model.

2.2.7 [R6a] Supplementary components available in instance documents

Instance documents often have fiduciary requirements. This requirement is independent of the need to be
able to validate contents according to a referenced schema. This requires that some meta-information be
explicitly contained in the instance document, irrespective of its availability in a referenced document. It is
therefore desirable that:

» The supplementary components of the code lists of code list values utilized in a UBL instance be
available in the XML instance proper without any processing from any external source including
any schema expression.

» The supplementary components be available for all code-list-value information items even when
two or more such information items are found in the set of data and attribute information items for
any given element.

255 2.3 Types of code lists

256 2.3.1 [R7] UBL maintained Code List

257 UBL will make use of code lists that describe information content specific to UBL.

258 In some cases the UBL Library may have to be extended to meet specific business requirements. In other
259 cases where a suitable code list does not exist in the public domain, that code list and all its values may
260 have to be added to the UBL Library where it will be maintained. Both of these types of code lists would
261 be considered UBL-internal code lists.

262 2.3.2 [R8] Identify and use external standardized code lists

263 Because the majority of code lists are owned and maintained by external agencies, UBL will make
264 maximum use of such external code lists where they exist. The UBL Library SHOULD identify and use
265 external standardized code lists rather than develop its own UBL-native code lists.

266 2.3.3 [R9] Private use code list

267 This model must support the construction of private code lists where an existing external code list needs
268 to be extended, or where no suitable external code list exists.

269 2.4 Technical requirements of Code Lists

270 Following are technical quality requirements for code lists.

271 2.4.1 [R10] Semantic clarity

272 The ability to “de-reference” the ultimate normative definition of the code being used. The supplementary
273 components for “Code.Type” CCTs are the expected way of providing this clarity, but there are many

274 ways to supply values for these components in XML, and it's even possible to supply values in some non-
275 XML form that can then be referenced by the XML form.

276 2.4.2 [R11] Interoperability

277 Interoperability can be thought of as the sharing of a common understanding of the limited set of codes
278 expected to be used. There is a continuum of possibilities here. For example, a schema datatype that
279 allows only a hard-coded enumerated list of code values provides “hard” (but inflexible) interoperability.
280 On the other hand, merely documenting the intended shared values is more flexible but somewhat less
281 interoperable, since there are fewer penalties for private arrangements that go outside the standard
282 boundaries. This requirement is related to, but distinct from, validatability and context rules friendliness.

283 2.4.3 [R12] External maintenance

284 The ability for non-UBL organizations to create XSD schema modules that define code lists in a way that
285 allows UBL to reuse them without modification on anyone’s part. Some standards bodies are already
286 doing this, although we recognize that others may never choose to create such modules.

287
288

289
290

201
292

293
294

295

296
297

298

299

300
301
302
303
304
305
306
307

308
309

310

311

312

313

314

315

316
317

2.4.4 [R13] Validatability
The ability to use XSD to validate that a code appearing in an instance is legitimately a member of the

chosen code list. For the purposes of the analysis presented here, “validatability” will not measure the
ability for non-XSD applications (for example, based on perl or Schematron) to do validation.

2.4.5 [R14] Context rules friendliness
The ability to use expected normal mechanisms of the context methodology for allowing codes from

additional lists to appear (extension) and for subsetting the legitimate values of existing lists (restriction),
without adding custom features just for code lists.

2.4.6 [R15] Upgradability

The ability to begin using a new version of a code list without the need for upgrading, modifying, or
customizing the schema modules being used.

2.4.7 [R16] Readability

A representation in the XML instance that provides code information in a clear, easily readable form.

2.4.8 [R17] Code lists must be unambiguously identified
(1) - any two uses of the same namespace URI represent the use of the same code list definition
(2) - no two differing code list definitions shall be represented by the same namespace URI
Business issue: When two trading partners identify the use of a code list, there must not be any
ambiguity. Should either partner create a code list or change an existing code list, the
identification of the resulting code list must be distinct from that of its origin.

2.4.9 [R18 (Future)] Ability to prevent extension or modification

Certain code lists should not be extensible. For example, the traditional English list of colors in a rainbow,

RED ORANGE YELLOW GREEN BLUE INDIGO VIOLET. It should be possible to indicate that such a
code list is not extensible so the users can be assured of this constancy in its usage.

2.5 Design Requirements of Code List Data Model

What follows is a list of some of the features that a code list data model should provide.

2.5.1 [R19] A list of the values (codes) for a code list

The code list must contain one or more valid values.

2.5.2 [R20 (Future)] Multiple lists of equivalents values (codes) for a code
list

Individual code values must be able to be represented in multiple ways to account for individual business
requirements. For example, integers & mnemonics may both be needed. For days of the week, both well

318
319

320

321

322

323
324

325

326

327

328
329

330
331

332
333

334

335

336

337

338

339
340

341

342
343

344
345

346
347
348

accepted names, abbreviations, and integers might be convenient to represent Sunday/SUN/1
Monday/MON/2 Tuesday/TUE/3 Wednesday/WED/4 Thursday/THU/5 Friday/FRI/6 Saturday/SAT/7.

2.5.3 [R21] Unique identifiers for a code list

The code list must contain a unique identifier to be able to reference the entire code list as an item.

2.5.4 [R22] Unique identifiers for individual values of a code list

Each code within the code list must contain a unique identifier to be able to reference that particular code
without knowing the code value or decode value for that code.

2.5.5 [R23] Names for a code list

Each code list must have a unique name that intuitively implies the content of the list.

2.5.6 [R24] Documentation for a code list

Each code list must contain documentation which describes, in detail, the business usage for this code
list.

2.5.7 [R25] Documentation for individual values of a code list
Each code value on the code list must not only be able to support valid values, but must also allow

optional index values and a long description to convey, in detail, the business meaning and usage for this
code value.

2.5.8 [R26 (Future)] The ability to import, extend, and/or restrict other code
lists

The model for code lists must be able to provide the ability to extend, restrict or import additional values.
2.5.9 [R27 (Future)] Support for describing code lists that cannot be
enumerated

Either because of size, volatility, or proprietary restrictions (e.g. a WSDL description of a Web service that
can validate which of a set of codes are members of a particular code list) ??

2.5.10 [R28 (Future)] Support for references to equivalent code lists

Each code list must be able to refer to other code lists that may or may not be used in place of it. These
references are not necessarily exactly the same, but may be equivalent based on business usage.

2.5.11 [R29 (Future)] Support for individual values to be mapped to
equivalent values in other code lists

Each code list value must be able to refer to other code list values that may or may not be used in place
of it. These references are not necessarily exactly the same, but may be equivalent based on business
usage.

349
350

351
352

353

354

355
356

357

358
359
360

361

362
363
364

2.5.12 [R30 (Future)] Support for users to attach their own metadata to a
code list

Each code list must have the flexibility to have additional descriptive information added by an individual
user to account for unique business requirements.

2.5.13 [R31 (Future)] Support for users to attached their own metadata to
individual values of a code list

Each code value must have the flexibility to have additional descriptive information added by an individual
user to account for unique business requirements.

2.5.14 [R32 (Future)] Support for describing the validity period of the values

An effective date and expiration date should be established so that the code list can be scoped in time.
See, for example, “Patterns for things that change with time”,
http://martinfowler.com/ap2/timeNarrative.html

2.5.15 [R33] Identifier for UN/CEFACT DE 3055.

Many code lists have been defined by UN/CEFACT. The code list model requires a representation of an
identifier for this standard UNTDED 3055[UNTDED 3055]. This identifier uniquely identifies UN/EDIFACT
standard code lists.

365

366
367
368

369
370
371

372
373
374

375

376

377

378

3 Data and Metadata Model for Code Lists

This section provides rules for developing and using reusable code lists. These rules were developed for
the UBL Library and derivations thereof, but they may also be used by other code-list-maintaining
agencies as guidelines for any vocabulary wishing to share code lists. See section 5.0 Conformance.

Since the UBL Library is based on the ebXML Core Components Versionl1.9, 11 December 2002; see
[CCTS1.9)]), the supplementary components identified for the Code. Type core component type are used
to identify a code as being from a particular list.

Note that the model in this section is presented in two parts:
A data model for the codes themselves, and,

A metadata model for “supplementary components” that describe the entire list

3.1 Data Model Definition

The data model of codes in a code list is presented below.

Object Class Property Term Represe PrimitiCard. Remarks
n-tation ve

Code. Content Code Content Text String 1..1 |Required

Content

Code. CodeName Code Name Text String 0..n Optional

Name.

Text

N/A CodeDescription Code Description Description Text String 0..n Optional

N/A Codelndex (Future) Code Index Index Numeric Numb 0..1 Optional
er

3.2 Supplementary Components (Metadata) Model Definition

The following model contains the supplementary components description of a code list.

UBL Name Object |Property Represen-Primitive Card.Remarks
Class Term tation Type
Term

N/A name Code Name Text String 0.1 Optional
Code List. CodelListID Code List Identificationldentifier String 0..1 Optional
Identifier
Code List. CodelListAgencylD Code List Agency Identifier String 0..1 Optional
Agency. Identifier

379

380

381
382
383
384

385
386

387
388

389

Code List. Agency CodeListAgencyName Code List Agency Text String 0.1 Optional

Name. Text Name

Code List. Name. CodeListName Code List Name Text String 0.1 Optional
Text

Code List. CodelListVersionlD Code List Version Identifier String 0..1 Optional

Version. ldentifier

Code List. CodelListURI Code List Uniform Identifier String 0..1 Optional
Uniform Resource

Resource.

Identifier

Code List CodelListSchemeURI Code List Uniform Identifier String 0..1 Optional
Scheme. Uniform Scheme Resource

Resource.

Identifier

Language. LanguagelD Languageldentifier Identifier String 0..1 Optional
Identifier

Code List . CodeListNamespacePrefixID Code List Namespace |dentifier String 0..1 Optional
Namespace . Prefix

Prefix. Identifier

N/A CodelListDescription Code List Description Text String 0.1 Optional
N/A CodelListCredits Code List Credits Text String 0.1 Optional

3.3 Examples of Use

The data type “Code" is used for all elements that should enable coded value representation in the
communication between partners or systems, in place of texts, methods, or characteristics. The list of
codes should be relatively stable and should not be subject to frequent alterations (for example,
CountryCode, LanguageCode, etc.). Code lists must have versions.

If the agency that manages the code list is not explicitly named and is specified using a role, then this
takes place in an element type’s name.

The following types of code can be represented:

a.) Standardized codes whose code lists are managed by an agency from the code list DE 3055.

Code ‘ Standard ‘
CodelistID Code list for standard code

CodeListVersionlD Code list version

CodelListAgencylD Agency from DE 3055 (excluding roles)

b.) Proprietary codes whose code lists are managed by an agency that is identified by using a standard.

Code Proprietary ‘

390
391

392
393

394
395

CodelListID

Code list for the propriety code

CodelListVersionID

Version of the code list

CodelListAgencylD Standardized ID for the agency (normally the
company that manages the code list)

CodeListSchemeURI ID schema for the schemeAgencyld

CodelListURI Agency DE 3055 that manages the standardized

ID ‘listAgencyld’

c.) Proprietary codes whose code lists are managed by an agency that is identified without the use of a

standard.
Code
CodelListID

Proprietary

Code list for the proprietary code

CodelListVersionID

Code list version

CodelListAgencylD Standardized ID for the agency (normally the
company that manages the code list)

CodelListSchemeURI ID schema for the schemeAgencyld

CodelListURI ‘2727’ (mutually defined from DE 3055)

d.) Proprietary codes whose code lists are managed by an agency that is specified by using a role or that

is not specified at all.

The role is specified as a prefix in the tag name. listID and listVersionID can optionally be used as
attributes if there is more than one code list. If there is only one code list, no attributes are required.

Code
CodelListID

Proprietary

ID schema for the proprietary identifier

CodelListVersionID

ID schema version

396

397
398
399

400
401

402
403

404
405
406
407

408
409
410

411
412

4 XML Schema representation of Code Lists

This section describes how the data model is mapped to XML schema [XSD]. The code list mechanism
described in this paper assumes that it will be used in the UBL context according to the following graphic
that describes the type derivation hierarchy for code list and related schemas [UBL1-SD]:

3

|
e - - I - - -l:'t Oy = -
PPSEE S e L R

ey ———— - —_- - - - - —_ —_ - — —— — =]

Figure 1 UML Diagram of UBL Schemas type hierarchy

As shown in the figure, an abstract model of “any” UBL code list appears in a code list specific
namespace.

Note that an instance of a code list is derived in several pieces — a simpleType that contains the actual
content of the code list, and, a complexType with simple content that attaches the optional supplementary
components to the enumeration. The following procedure describes the construction of a code list
schema:

Define an abstract element for inclusion in extensible schemas (future)
Define a simpleType to hold the enumerated values
Define a complexType to add the supplementary components

Define a global attribute to contain the enumerated values as an attribute and for supplementary
components as needed. (future)

413
414

415
416

417

418
419

420
421

Define an element that substitutes for the abstract type to enable usage in unextended schemas

(future)

Define a comprehensive URN to hold supplementary components that can qualify uniqueness of

usage (future)

4.1 Data Model Mapping

The following table summarizes the component mapping of the data model. Items in braces, “{}" are
references to the data model components. For example:

{code.name} represents the contents of the name of the code list, i.e. CountryCode;

“{code.name} Type” represents the contents of the name of the code list, i.e. “CountryCodeType”;

o UBL Name 0 XMLSchema Mapping

0]

Code.Content

0 1. Abstract element (Future)

<xs: el ement nanme="{code. nane} A" type="xs:token"
abstract="true"/>

o} 2. Simple type to hold code list values and optional annotations

<xs: si npl eType nane="{code. nane} Type" >
<xs:restriction base="xs:token">
<xs: enuneration val ue="{code. content}"
<xs: annot ati on>
<xs: docunent ati on>
{code. descri pti on}
</ xs: docunent at i on>
</ xs: annot ati on>
</ xs: enumner ati on>
<xs: enuneration val ue="{code. content}"/>
<xs: enuneration val ue="{code. content}"/>

</xs:restriction>
</ xs: si mpl eType>

o} 3. Complex type to associate supplementary values with code
list values that substitutes for the abstract type.

<xs: conpl exType nane="{code. nane}" >
<xs: annot at i on>
<xs: docunent ati on>
<ccts: | nstance>
<I-- Data and values stored in this space
are meant for instance-processing
pur poses, and are non-normative. -->
<ccts: Prefi x>l oc</ccts: Prefix>
<ccts: CodeLi st Qual i fi er >{ code. nane}
</ ccts: CodeLi st Qual i fier>
<cct s: CodelLi st Agency>{ Code. | i st Agency! D}
</ cct s: Codeli st Agency>
<cct s: CodelLi st Ver si on>{ Code. | i st Ver si onl D}
</ cct s: CodelLi st Ver si on>
</ ccts: | nstance>
</ xs: docunent ati on>
</ xs: annot at i on>
<xs: si npl eCont ent >
<xs: ext ensi on base="{Code. nane} Type" >
<xs:attribute name="CodelList|D"
t ype="xs:token" fixed="{CodeListlD}"/>
<xs:attribute nane="Codeli st Agencyl D'

422

423
424
425

t ype="xs:t oken"
fi xed="{ CodelLi st Agencyl D} "/ >
<xs:attribute name="CodelLi st Versi onl D'
type="xs:string"
fi xed="{ CodelLi st Versi onl D} "/ >
addi ti onal
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>

o] 4. Attribute (Future)

<xs:attribute nane="{Code. nane}"
type="{Code. nane} Cont ent Type"/ >

optional attributes

o] 5. Element to substitute for abstract element in non-exended
schemas (Future)
<xs: el ement name="{Code. nane}"
t ype="{ Code. nane} Type"
substi t uti onG oup="{ Code. nane} TypeA"/ >

0 Code.Description

Xs:annotation/ xs:documentation/

o Code.Value

Xs:annotation/ xs:documentation/

4.2 Supplementary Components Mapping

The following table shows all supplementary components of the code type. It also shows the current
representation by using attributes and the recommended optional representation by using namespaces

and annotations.
UBL Name

Optional
XMLSchema

Optional

Mapping
URN mapping

complex type attribute
mapping

name Xs:annotation/ 0 This is the default name of the
xs:documentation/ implemented element and
cc.codename attribute above.

CodeListID namespace (URN) E’;fr;i-t- tcL'dg‘E? §t | D'
1. position t ype="xs: nor mal i zedStrin
Mandatory g"/>

CodeListName namespace (URN) :gfmit toghglﬂf gt Nane"
2. position type="xs:string"/>
Optional

CodelListVersionID namespace (URN) :gfmit toghglﬂf gt Ver si onl D"
3. position type="xs: normal i zedStrin
Mandatory g"/>

CodelListAgencylD namespace (URN) :gfreit tcz)ldglljf gt Agencyl D'
4. position type="xs: normal i zedStrin
Optional g"/>

CodelListAgencyName namespace (URN) AP e

5. position
optional

name=" CodeLi st AgencyNane
" type="xs:string"/>

426

427

428
429
430
431

432
433

434
435
436
437
438

439
440

441

442
443

444

445
446

447
448
449
450

<xs:attribute

CodeListURI namespace (URN) name="CodeLi st URI
6. position type="xs: anyUR "/ >
optional

CodeListSchemeURI namespace (URN) Zﬁzeff tsltr g?ﬁéﬁeﬂg{m:
7. position t ype="xs: normal i zedStrin
optional g"/>

LanguagelD <xs:attribute

nanme=" Languagel D’
t ype="xs: | anguage”/ >

<xs:attribute name="
CodelLi st NamespacePr ef i x|
D’

type="xs: normal i zedStrin
g'/>

CodeListNamespacePrefixID

<xs:attribute name=

CodelListDescription CodeLi st Descri pti on”
type="xs:string”/>
CodelListCredits sxs:attribute name=

CodeLi stCredits”
type="xs:string”/>

4.3 Namespace URN (Future)

The following construct represents the construct for the URN of a code list, according OASIS URN:

urn:oasi s:tc:ubl: codeLi st: <CodeLi st.|dentification.|dentifier>: <CodeLi st. Nane.
Text >: <Codeli st. Versi on. | denti fi er>: <CodelLi st . Agencyl denti fi er>: <CodeLi st . Agen
cyNane. Text >: <CodelLi st. AgencySchene. | denti fi er >: <CodelLi st . AgencyScheneAgency. |
dentifier>

The first four parameters are fixed by Uniform Resource Name (URN) [see RFC 2141] and OASIS URN
[see RFC 3121]:

0 urn -->leading token of URNs

0 oasis --> registered namespace ID “oasis”

0 tc --> Technical Committee Work Products

0 ubl--> From Technical Committee UBL (Universal Business Language)
0 The parameter “codeList” identifies the schema type “code list”.

0 The following parameters from <Code List. Identifier> to <Code List. Agency Scheme Agency.
Identifier> represents the specific code list supplementary components of the CCT codeType.

o Example:

urn: oasi s:tc:ubl:codelLi st: | S0639: Language%20Code: 3: | SO | nt er nat i onal %20St andar
di zati on%200r gani zati on: :

4.4 Namespace Prefix

REWORD THIS. Namespace prefix could be freely defined. However, it is helpful for better
understanding, to identity the code lists by a convention of namespace prefixes.

The prefix provides the namespace prefix part of the qualified name of each code list. It is recommended
that this prefix should contain the information of the supplementary component <Code List. Identification
Identifier> and if it is necessary for separation, the information of the supplementary component <Code
List. Version. Identifier> separated by a dash “-“. All letters should be lower case.

451

452
453

454

455

456

457
458
459
460

461
462
463

Example:

i 0639
i S0639-3 (with version)

4.5 Code List Schema Generation

This section describes how to generate complete code list schemas from the data model of section 4.

4.5.1 Data model and example values

The code list model and supplementary components are listed in the following table. The first column
contains the UBL name and the second column contains an example of the value(s) for that name. It is
assumed that the UBL name is the proposed name for the schema
element/attribute/simpleType/complexType etc....

The expressions ValueOf(<UBL Name>), and, {UBL Name}refer to the contents for a specific code list.
The latter representation is used so that a substitution can be shown within the schema fragments
generated.

UBL Name Description Sample ValueOf(<UBL
Name>)

{UBL Name}
<enuner at ed val ues>

Content A character string (letters, figures or
symbols) that for brevity and/or
language independence may be used to
represent or replace a definitive value
or text of an Attribute.

The textual nane of the

Name <enumerated value definitions> (if
code content.
Content="USD” then Name = “US
Dollars”)
CodelListIiD The identification of a list of codes. Lol
CodelListAgencylD An agency that maintains one or more 6
code lists.

Uni ted Nations Econom c

CodeListAgencyName | The name of the agency that maintains Conmi ssi on for Europe

the code list.
CodelListName The name of a list of codes. U@ 1EY
CodelListVersionID The Version of the code list. o
. . o http://ww. bsi -
CodelListURI The L_J_mform Resource Ide_ntnjer that gl obal . com Techni cal %2B
identifies where the code list is located. [nf or mat i on/ Publ i cati on
s/ _Publications/tig90x.
doc

urn: oasi s: nanes:tc: ubl:

CodelListSchemeURI The Uniform Resource ldentifier that codel i st : QurrencyCode: 1

identifies where the code list schemeis | .o graft-8-11
located.
LanguagelD The identifier of the language used in En

the corresponding text string

cur

CodeListNamespaceP | The namespace prefix recommended

464

465
466
467
468

469

470

471
472

473
474

475

476

refixID for this code list. Should be based on
the CodelListlID.

The set of world

CodelListDescription Describes the set of codes CUrT enci es
. . Derived fromthe | SO
CodelListCredits Acknowl_edges the source and 4217 currency code |ist
ownership of codes anel ueed uneEr e
terms of the |1SO policy
stated at

http://ww.iso.org/isol/
en/ commtent re/ pressrel e
ases/ 2003/ Ref 871. ht i .

4.5.2 Schema to generate

This section describes the specific steps required to generate a schema from the above model. Each step
shows two schema fragments — one that is a template for generating the schema, and, the second one
that is an example schema generated. In the template sections, the places where values from the
spreadsheet model are inserted are shown in braces, and are colored green —

e.g. “{CodelLi st Agencyl D}” nmeans substitute the value “6”.

4.5.3 Schema file name

The name of this schema file should be:
UBL- CodelLi st - { CodeLi st Nane} - { CodeLi st Ver si onl D} . xsd

For example:
UBL- CodelLi st - CurrencyCode- 1. 0. xsd

4.5.3.1 Generate XML header

Template, Sample are the same:

<?xml version="1.0" encoding="UTF-8"?>
<l--
Universal Business Language (UBL) Schema 1.0-draft-10.1

Copyright (C) OASIS Open (2004). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole or
in part, without restriction of any kind, provided that the above copyright

notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to OASIS, except as needed for the
purpose of developing OASIS specifications, in which case the procedures for
copyrights defined in the OASIS Intellectual Property Rights document must be
followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by
OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS"

basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE.

For our absent friend, Michael J. Adcock - il miglior fabbro

Universal Business Language Specification
(http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ubl)
OASIS Open (http://www.oasis-open.org/)

Schema generated by GEFEG EDIFIX v5.0-beta
(http://www.gefeg.com/en/standard/xml/ubl.htm)

Document Type: CurrencyCode
Generated On: Fri Mar 26 14:30:20 2004
-->

477 4.5.3.2 Generate XML Schema header

478 Template:

<xs:schema
targetNamespace="{CodeListSchemeURI}”
xmins="{CodeListSchemeURI}”

xmlins:xsd="http://www.w3.0rg/2001/XMLSchema”
elementFormDefault="qualified” attributeFormDefault="unqualified” version="1:0-draft-7.1">

479 Sample:

<xs:schema
targetNamespace="urn:oasis:names:tc:ubl:codelist: CurrencyCode:1:0-draft-7.1"
xmlns="urn:oasis:names:tc:ubl:codelist: CurrencyCode:1:0-draft-7.1"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema”
elementFormDefault="qualified” attributeFormDefault="unqualified” version="1:0-draft-7.1">

480 4.5.3.3 Generate abstract element (Future)

481 Template:

<xs:element name="{CodeListName}Abstract" type="xs:string" abstract="true"/> {i would prefer to make
the meaning of this clear}

482 Sample:

<xs:element name="CurrencyCodeAbstract" type="xs:normalizedString" abstract="true"/>

483 4.5.3.4 Generate simple type to contain the enumerated values

484 Template:

<xs:simpleType name="{CodeListName}ContentType">
<xs:restriction base="xs:string">
<xs:enumeration value="{first Content}”
<xs:annotation>
<xs:documentation>
<CodeName>{first Name}"</CodeName>
</xs:documentation>
</xs:annotation>
</xs:enumeration>

<xs:enumeration value="{last Content}"
<xs:annotation>
<xs:documentation>
<CodeName>{last Name}’'</CodeName>
</xs:documentation>
</xs:annotation>
</xs:enumeration>
</xs:restriction>
</xs:simpleType>

485 Sample:

<xs:simpleType name="CurrencyCodeContentType">
<xs:restriction base="xs:string">
<xs:enumeration value="AED">
<xs:annotation>
<xs:documentation>
<CodeName>UAE Dirham</CodeName>
</xs:documentation>
</xs:annotation>
</ xs:enumeration>
<xs:enumeration value="ALL">
<xs:annotation>
<xs:documentation>
<CodeName>Albanian Lek</CodeName>
</xs:documentation>
</xs:annotation>
</xs:xs:enumeration>
<xs:enumeration value="AMD”
<xs:annotation>
<xs:documentation>
<CodeName>Armenian Dram</CodeName>
</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="ANG"/>
<xs:enumeration value="AOA"/>
<xs:enumeration value="XDR"/>

<xs:enumeration value="ZAR"/>
<xs:enumeration value="ZMK"/>
<xs:enumeration value="ZWD"/>
</xs:restriction>
</xs:simpleType>

486 4.5.3.5 Generate complex type to hold enumerated values and supplemental
487 components

488 Template:

<xs:complexType name="{CodeListName}Type">
<xs:annotation>
<xsd:documentation>

<ccts:Component>
<ccts:ComponentType>DT</ccts:ComponentType>
<ccts:DictionaryEntryName>Code. Type</ccts:DictionaryEntryName>
<ccts:RepresentationTerm>Code</ccts:RepresentationTerm>
<ccts:DataTypeQualifier>Currency</ccts:DataTypeQualifier>
<ccts:DataType>Code. Type</ccts:DataType>

</ccts:Component>

<ccts:Instance>
<ccts:CodelListiD>{CodeListID}</ccts:CodeListID>
<ccts:CodeListAgencylD>{CodeListAgencylD}</ccts:CodeListAgencylD>
<ccts:CodeListAgencyName>{CodeListAgencyName}</ccts:CodeListAgencyName>
<ccts:CodeListName>{CodeListName}</ccts:CodeListName>
<ccts:CodeListVersionID>{CodeListVersionlD}</ccts:CodeListVersionlD>
<ccts:CodeListUniformResourcelD>{CodeListURI}</ccts:CodeListUniformResourcel D>

<ccts:CodeListSchemeUniformResourcelD>{CodeListSchemeURI}
</ccts:CodeListSchemeUniformResourcelD>
<ccts:LanguagelD>{LanguagelD}</ccts:LanguagelD>
</ccts:Instance>
</xsd:documentation>
</xs:annotation>
<xs:simpleContent>
<xs:extension base="{CodeListName}ContentType">

<xs:attribute name="codeListID" type="xs:normalizedString" fixed="{CodeListID}"/>

<xs:attribute name="codeListAgencyID" type="xs:normalizedString"
fixed="{CodeListAgencylD}"/>

<xs:attribute name="codeListAgencyName" type="xs:normalizedString"
fixed="{CodeListAgencyName}'/>

<xs:attribute name="codeListName" type="xs:string" fixed="{CodeListName}">

<xs:attribute name="codeListVersionID" type="xs:string"
fixed="{CodeListVersionID}"/>

<xs:attribute name="codeListURI" type="xs:anyURI" fixed="{CodeListURI}">

<xs:attribute name="codeListSchemeURI" type="xs:anyURI"
fixed="{CodeListSchemeURI}">

<xs:attribute name="languagelD" type="xs:language" fixed="{LanguagelD}">

</xs:extension>
</xs:simpleContent>
</xs:complexType>

489 Sample:

<xs:complexType name="CurrencyCodeType">
<xs:annotation>
<xsd:documentation>
<ccts:Component>
<ccts:ComponentType>DT</ccts:ComponentType>
<ccts:DictionaryEntryName>Code. Type</ccts:DictionaryEntryName>
<ccts:RepresentationTerm>Code</ccts:RepresentationTerm>
<ccts:DataTypeQualifier>Currency</ccts:DataTypeQualifier>
<ccts:DataType>Code. Type</ccts:DataType>
</ccts:Component>
<ccts:Instance>
<ccts:CodeListID>ISO 4217 Alpha</ccts:CodeListID>
<ccts:CodeListAgencylD>6</ccts:CodeListAgencylD>
<ccts:CodeListAgencyName>United Nations Economic Commission for
Europe</ccts:CodeListAgencyName>
<ccts:CodeListName>Currency</ccts:CodeListName>
<ccts:CodelListVersionlD>0.3</ccts:CodeListVersionID>
<ccts:CodeListUniformResourcelD>
http://www.bsi-global.com/Technical%2BInformation
/Publications/_Publications/tig90x.doc </ccts:CodeListUniformResourcelD>
<ccts:CodelListSchemeUniformResourcelD>
urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-10.1
</ccts:CodeListSchemeUniformResourcelD>
<ccts:LanguagelD>en</ccts:LanguagelD>
</ccts:Instance>
</xsd:documentation>
</xs:annotation>
<xs:simpleContent>
<xs:extension base="CurrencyCodeContentType">
<xsd:attribute name="name" type="xsd:string" use="optional"/>
<xsd:attribute name="codeListID" type="xsd:normalizedString" use="optional"
fixed="ISO 4217 Alpha"/>
<xsd:attribute name="codeListAgencyID" type="xsd:normalizedString" use="optional"
fixed="6"/>
<xsd:attribute name="codeListAgencyName" type="xsd:string" use="optional"
fixed="United Nations Economic Commission for Europe"/>
<xsd:attribute name="codeListName" type="xsd:string" use="optional"
fixed="Currency"/>
<xsd:attribute name="codeListVersionID" type="xsd:normalizedString" use="optional"
fixed="0.3"/>
<xsd:attribute name="codeListURI" type="xsd:anyURI" use="optional"
fixed="http://www.bsi-global.com/
Technical%2BInformation/Publications/_Publications/tig90x.doc"/>
<xsd:attribute name="codeListSchemeURI" type="xsd:anyURI" use="optional"
fixed="urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-10.1"/>
<xsd:attribute name="languagelD" type="xsd:language" use="optional" fixed="en"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

490 4.5.3.6 Generate global attributes to allow usage of code lists as an attribute
491 (Future)

492 Template:

493

494

495

496

497

498

499

500

501
502
503

504
505

506
507
508
509
510

<xs:attribute name="{CodeListName}” type="{CodeListName}ContentType"/>
<xs:attribute name="codeListID” type="xs:normalizedString” fixed="{CodeListID}"/>
<xs:attribute name="codeListAgencylD” type="xs:normalizedString ” fixed="{CodeListAgencylD}"/>
<xs:attribute name="codeListAgencyName” type="xs:string”
fixed="{CodeListAgencyName}'/>
<xs:attribute name="codeListVersionID” type="xs:normalizedString " fixed="{CodeListVersionID}"/>
<xs:attribute name="codeListName” type="xs:string " fixed="{CodeListName}"/>
<xs:attribute name="name” type="xs:normalizedString ” fixed="{name}"/>
<xs:attribute name="codeListURI” type="xs:anyURI" fixed="{CodeListURI}"/>
<xs:attribute name="codeListSchemeURI” type="xs:anyURI” fixed="{CodeListSchemeURI}'/>
<xs:attribute name="languagelD” type="xs:normalizedString " fixed="{LanguagelD}"/>

Sample:

<xs:attribute name="CurrencyCode” type="CurrencyCodeContentType"/>
<xs:attribute name="name" type="xs:normalizedString" fixed="cur"/>
<xs:attribute name="codeListID” type="xs:normalizedString” fixed="ISO 4217 Alpha’/>
<xs:attribute name="codeListAgencyID” type="xs:normalizedString " fixed="6"/>
<xs:attribute name="codeListAgencyName” type="xs:string ”
fixed="United Nations Economic Commission for Europe”/>
<xs:attribute name="codeListVersionID” type="xs:normalizedString " fixed="0.3"/>
<xs:attribute name="codeListName" type="xs:string" fixed="CurrencyCode"/>
<xs:attribute name="codeListURI" type="xs:anyURI"
fixed="http://www.bsi-global.com/Technical%2BInformation/Publications/_Publications/tig90x.doc"/>
<xs:attribute name="codeListSchemeURI" type="xs:anyURI"
fixed="urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-8-1"/>
<xs:attribute name="languagelD" type="xs:language" fixed="en"/>

4.5.3.7 Generate global element to allow usage of code list as an element (Future)

Template:

<xs:element name="{CodeListName}” type="{CodeListName}Type”
substitutionGroup="{CodeListName}Abstract"/>

Sample:

<xs:element name="CurrencyCode” type="CurrencyCodeType”
substitutionGroup="CurrencyCodeAbstract"/>

4.5.3.8 End of schema

Template:

</xs:schema> |

Sample:

</xs:schema> |

4.6 Code List Schema Usage

For every code list, there exists a specific code list schema. This code list schema must have a
targetNamespace with the UBL specific code list namespace and have a prefix with the code list identifier
itself.

The element in the code list schema can be used for the representation as a global declared element in
the document schemas. The name of the element is the UBL tag name of the specific BIE for a code.

The simpleType represents the possible codes and the characteristics of the code content. The name of
the simpleType must be always ended with “. Content”. Within the simpleType is a restriction of the XSD
built-in data type “xs:token”. This restriction includes the specific facets “length”, “minLength”,
“maxLength” and “pattern” for regular expressions to describe the specific characteristics of each code

list.

511
512
513

514
515

Each code will be represented by the facet “enumeration” after the characteristics. The value of each
enumeration represents the specific code value and the annotation includes the further definition of each
code, like “Code. Name”, “Language. Identifier” and the description

The schema definitions to support this might look as follows
<?xm version="1.0" encodi ng="UTF- 8" ?>
<xs: schema
t ar get Namespace="ur n: oasi s: ubl : codeLi st: | SG3166: Local e%20Code: 3: 5: 1 SO : "
xm ns: i s03166="urn: oasi s: ubl : codeLi st: | SC3166: Local e%20Code: 3: 5:1SQ : "
xm ns: xs="http://wwmv. w3. or g/ 2001/ XM_Schena"
el enent For nDef aul t =" qual i fi ed" attri buteFornDefaul t ="unqual ified">

<xs: el ement nanme="Local eCodeTypeA" type="xs:token"
abstract="true">
<xs:annot at i on>
<xs: docunent at i on>
An abstract place holder for a code |ist el ement
</ xs: docunent ati on>
</ xs:annot ati on>
</ xs: el ement >

<xs: si npl eType nane="Local eCodeCont ent Type" >
<xs:restriction base="xs:token">
<xs:enuneration val ue="DE"/>
<xs:enuneration val ue="FR'/>
<xs:enuneration val ue="US"/>

</xs:restriction>
</ xs: si mpl eType>

<xs: conpl exType nanme="Local eCodeType" >
<xs: annot ati on>
<xs: docunent at i on>
<ccts: | nstance>

<I-- Data and val ues stored in this space
are meant for instance-processing purposes, and are
non- nor native. -->

<ccts: Prefi x>l oc</ccts: Prefix>
<ccts: CodeLi st Qual i fi er>Local eCode</ ccts: CodeLi st Qual i fi er>
<ccts: CodelLi st Agency>l SG3166</ cct s: CodeLi st Agency>
<cct s: CodelLi st Ver si on>0. 3</ cct s: CodelLi st Ver si on>
</ccts: | nstance>
</ xs: docunent at i on>
</ xs: annot at i on>
<xs: si npl eCont ent >
<xs: ext ensi on base=" Local eCodeType" >
<xs:attribute nane="CodelList| D' type="xs:token" fixed="|SC3166"/>
<xs:attribute nane="Codeli st Agencyl D' type="xs:token" fixed="6"/>
<xs:attribute nane="Codeli st Versi onl D' type="xs:string" fixed="0.3"/>
addi ti onal optional attributes
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>

<xs: el ement nanme="Local eCode" type="Local eCodeType"
substituti onG oup="Local eCodeTypeA" >
<xs: annot at i on>
<xs: docunent at i on>
A substitution for the abstract el enent based
on aSt dEnum
</ xs: docunent ati on>
</ xs: annot ati on>
</ xs: el enent >

594

595
596
597

598

<xs:attribute nane="{Code. name}" type="{Code. nane} Cont ent Type" >
<xs:annot at i on>
<xs: docunent ati on>
A gl obal attribute for use inside an el enent
</ xs: docunent ati on>
</ xs: annot ati on>
< xs:attribute/>

</ xs: schenma>

4.7 Instance

The enumerated list method results in instance documents with the following structures.
<Local eCode>US</ Local eCode>

<i s03166: Local eCode>US</i s03166: Local eCode>

<Post Code i s03166: Local eCode="FQ'>20878</ Post Code>

4.8 Deriving New Code Lists from Old Ones (future)

In order to promote maximum reusability and ease code lists maintenance, code list designers are
expected to build new code lists from existing lists. They could for example combine several code lists or
restrict an existing code list.

These new code lists must be usable in UBL elements the same manner the “basic” code lists are used.

4.8.1 Extending code lists

The base schema shown above could be extended to support new codes as follows:

<xs:schema t ar get Nanmespace="cust"
xm ns: std="std"
xm ns="cust"
xm ns: cust =" cust ont'
xm ns: xs=http://ww. w3. or g/ 2001/ XM_Schema
el ement For nDef aul t =" qual i fi ed"
attri but eFor mDef aul t =" unqual i fi ed" >

<xs:inport nanespace="std"
schenmaLocati on="D:\ _PROJECT\ NIl ST\ XM_Schena\t est 0513\ st d. xsd"/ >

<xs: el enent nanme="Local eCode" substituti onG oup="std: Local eCodeA">
<XS:annot ati on>
<xs: docunent ati on>A substitute for the abstract Local eCodeA
t hat extends the enuneration
</ xs: docunent ati on>
</ xs: annot at i on>
<xs: si npl eType>
<XS: uni on nmenber Types="st d: aSt dEnuni >
<xs: si npl eType>
<xs:restriction base="xs:token">
<Xxs:enuneration val ue="I1L"/>
<xS:enuneration val ue="GR'/ >
</xs:restriction>

625 </ xs: si npl eType>

626 </ xs: uni on>
627 </ xs: si npl eType>
628 </ xs: el enent >

629 </ xs: schema>

630 4.8.2 Restricting code lists

631 The base schema shown above could be restricted to support a subset of codes as follows:

632 <xs:i nport nanespace="std"

633 schemaLocati on="D:\ _PRQIECT\ NI ST\ XM_Schena\ t est 0513\ st d. xsd"/ >
634 <xs: el enent nane="Local eCode" substituti onG oup="std: Local eCodeA">
635 <XS:annot at i on>

636 <xs: docunent at i on>

637 A substitute for the abstract Local eCodeA that restricts
638 t he enunerati on

639 </ xs: docunment at i on>

640 </ xs: annot at i on>

641 <xs: si npl eType>

642 <xs:restriction base="xs:token">

643 <xs:enuneration val ue="DE"/>

644 <xs:enuneration val ue="US"/>

645 </ xs:restriction>

646 </ xs: si npl eType>

647 </ xs: el ement >

648

649
650

651
652
653
654

5 Conformance to UBL Code Lists (future)

This section is for Producers of Code Lists outside of UBL. These lists could be owned by a number of
different types of organizations.

We probably need a Conformance section in this document so that code list producers (who, in general,
won'’t be UBL itself) will know how/when to claim conformance to the requirements (MUST) and
recommendations (SHOULD/MAY) in this specification. This spec is not for the UBL TC, but for code list
producers (which may occasionally include UBL itself).

655

656

657
658

659
660
661

662
663

664

665
666

667
668

669

670
671
672

673
674
675

676
677

678
679

680
681
682

683
684

6 References

[3166-XSD]
[CCTS1.9]

[CLSC]

[SPENCER]

[STUHEC]
[COATES]

[CLTemplate]
[eBSC]
[eBSCMemo]

[NDR]

[RFC2119]
[CL5]

[1ISO 11179]
[UBL1-SD]
[UNTDED 3055]
[XSD]

UN/ECE XSD code list module for ISO 3166-1,

UN/CEFACT Draft Core Components Specification, Part 1, 11 December, 2002,
Version 1.9.

OASIS UBL Code List Subcommittee. Portal: http://www.oasis-
open.org/committees/sc_home.php?wg_abbrev=ubl-clsc . Email archive:
http://lists.oasis-open.org/archives/ubl-clsc/.

http://www.0oasis-open.org/apps/org/workgroup/ubl-
clsc/download.php/5195/Spencer-CodeList-PositionPaperl-0.pdf

<need reference>

http://www.oasis-open.org/apps/org/workgroup/ubl-clsc/download.php/4522/draft-
coates-codelistDataModels-0p2.doc

OASIS UBL Naming and Design Rules code list module template,
http://www.oasis-open.org/committees/ubl/ndrsc/archive/.

“eBusiness Standards Convergence Forum”, http://www.nist.gov/ebsc.

M. Burns, S. Damodaran, F.Yang, “Draft Code List Implementation description”,
http://www.oasis-open.org/apps/org/workgroup/ubl-
clsc/download.php/4503/nistTOUbLI20031119.zip

M. Cournane et al., Universal Business Language (UBL) Naming and Design
Rules, OASIS, 2002, http://www.oasis-
open.org/committees/ubl/ndrsc/archive/wd-ublndrsc-ndrdoc-nn/.

S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

http://www.oasis-open.org/apps/org/workgroup/ubl-clsc/download.php/4502/wd-
ublndrsc-codelist-05_las 20030702.doc

<need reference>
http://ibiblio.org/bosak/ubl/UBL-1.0/art/UBL-1.0-SchemaDependency.jpg
<need reference>

XML Schema, W3C Recommendations Parts 0, 1, and 2. 2 May 2001.
http://www.unece.org/etrades/unedocs/repository/codelist.htm.

685

Appendix A. Revision History

Revision Editor Description

2004-01-13 | Marty Burns First complete version converted from NDR revision
05

2004-01-14 | Marty Burns Minor edit of chapter heading 3 & 4

2004-01-20 | Marty Burns Incorporated descriptions from AS and KH

2004-02-06 | Marty Burns Cleaned up requirements and other sections —
removed some redundant content from merge of
contributions. Explicitly identified Data Model and
Metadata models separately from XML
representations of the same.

2004-02-11 | Marty Burns Added comments from 2/11 conference call

2004-02-29 | Marty Burns Added resolutions from February Face to Face
meeting

2004-03-03 | Marty Burns Incorporated Tim McGrath’s corrections of data
model

2004-03-09 | Marty Burns Addressed Eve Maler's comments
Addressed Tony Coates comments
Addressed 2004-03-03 telecon comments
Added some elaboration of the model usage in ubl

2004-03-15 | Marty Burns Added example mapping schema paper to section
4.6

2004-03-23 Marty Burns Added data model for supplementary components,
Marked future features for UBL 1.1 as (future)
Added comment about UBL1.0 release vs. future.

2004-04-01 Marty Burns Clean up for UBL version 1.0

2004-04-14 | Marty Burns Incorporated suggested edits from GKH

686

687
688
689
690
691
692
693
694

695
696
697

698

699
700
701
702
703
704
705
706

707
708

709
710
711
712

Appendix B. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS's procedures with
respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights
made available for publication and any assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of such proprietary rights by
implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to implement this
specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2004. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself
does not be modified in any way, such as by removing the copyright notice or references to OASIS,
except as needed for the purpose of developing OASIS specifications, in which case the procedures for
copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

