Message Assembly
Extracts from SWIFT Methodology ISO 15022

Working Draft

​​​​​​___________________________

MESSAGE ASSEMBLY PRIMER

Part 2:

Message Modelling Principles

Version 0.1

Release Date: 2002-07-01

The included information is subject to change.

​​​​​​___________________________

Based on SWIFT's ISO 15022 Methodology Papers

[image: image1.emf]Figure 1: simplified message metamodel

Choice Sequence

Quantity Identify Code DateTime Text Amount Rate

Binary

Message

MessageConstruct MessageComponent

MessageElement

Datatype

Edited by: Mike Adcock
CONTENTS

31
INTRODUCTION

1.1
DEFINITIONS
3
1.2
POINTS IN BRIEF
4
1.2.1
Analysis
4
1.2.1.1
Requirements Analysis
4
1.2.1.2
Logical Analysis
5
1.2.1.3
Logical Design
5
1.2.1.4
Technical Design (not covered)
6
2
STEPS
7
2.1
REQUIREMENTS ANALYSIS
7
2.1.1
Key Issues
7
2.1.2
Activities
7
2.1.2.1
Define final scope & boundary
7
2.1.2.2
Define communication requirements
7
2.1.3
Ideas to help
8
2.2
LOGICAL ANALYSIS
8
2.2.1
Key issues
8
2.2.2
Activities
8
2.2.2.1
Define the “architecture”
8
2.2.2.2
Define the Use Case Realizations
9
2.2.3
Ideas to help
9
2.2.3.1
In General
9
2.2.3.2
Message granularity
10
2.3
LOGICAL DESIGN
10
2.3.1
Key issues
10
2.3.2
Activity: Define Message Components
10
2.3.3
Ideas to help
11
2.3.3.1
Derive All Message Components from Business Components
11
2.3.3.2
Select / create the right Message Components for a Message
11
2.3.3.3
Define a new Message Component
12
2.3.3.4
What are Message Elements
13
2.3.4
Advanced Ideas
14
2.3.4.1
How to aggregate two Message Components
14
2.3.4.2
How to handle abstract classes
14
2.3.4.3
How to handle tables (bi-directional relations)
14
2.3.4.4
How to handle recursivity (relationship loops)
15
2.3.4.5
Inheritance
15
2.3.4.6
How to optimise Message Components
15
2.3.5
Activity : Compose Messages
15
2.3.5.1
Ideas to help
15
3
APPENDIX
17
3.1
List of Dictionary Items
17
3.1.1
Business Concepts
17
3.1.2
Data Types
17
3.1.3
Message Concepts
17

1 INTRODUCTION

Blah blah

1.1 DEFINITIONS

Market Practice
A set of Business Rules that are derived from specific (usually regional) business or regulatory agreements and common practices. A Message Definition covering a specific Message Functionality may differ slightly in function of the Market Practice. This means that there may be some variation in the structure and/or the set of Message Rules related to the Message Definition.

Message
A set of structured information exchanged between Business Actors or Business Roles, in the scope of a Business Process.

Example: NoticeOfExecution, OrderToBuy

Message Component
A reusable Dictionary Item that is a building block for assembling Message Definitions. It is normally linked to a Business Component and characterised by specific Message Elements. A Message Component is uniquely identified in the Data Dictionary.

Example: TradeDetails (which contains only a limited number of the properties of the related Business Component “Trade”)

Message Concept
Dictionary Item used for Message Definition, i.e. Message Component or Message Element.

Message Definition
The formal description of the structure of a Message. The Message Definition is built as a tree structure of Message Components. A Message Definition is uniquely identified in the Business Process Warehouse.

Message Definition Diagram
A graphical representation of the structure of a Message.

Message Element
A characteristic of a Message Component, having a unique semantic meaning within the scope of a Message Component. A Message Element is uniquely identified in the Data Dictionary.

Example: TradeDateTime (as part of the Message Component “TradeDetails”)

Message Flow Diagram
A Message Flow Diagram depicts the ordered sequence of Messages that may be exchanged between Business Actors or Business Roles. A Message Flow Diagram is uniquely identified in the Business Process Warehouse.

Message Functionality
The purpose for which a Message described by a Message Definition can be used. Note that Messages can be multi-functional, meaning that they can be used for multiple purposes.

Example: the ISO 15022:1999 Message “MT 502” can be used as an order to buy securities, as an order to sell securities, to cancel a previously placed order, to change a previously placed order.

Message Rule
A specific constraint that is specified at the level of a Message Definition or of a Message Component. A Message Rule is uniquely identified in the scope of a Message Definition or in the scope of a Message Component.

Message Specifications
A complete definition of a message, or set of messages, and the standardised way of using them, which is not limited to specific technical solutions in a particular 'language' such as X12, UN/EDIFACT, XML etc

Message Standard
A standardised set of messages and the standardised way to use these messages.

1.2 POINTS IN BRIEF

1.2.1 Analysis

The objective of analysis should be to discover the logical communication requirements, identifying and including any opportunities that will potentially and usefully enhance the performance of business processes around the exchange of information.

This analysis can be conducted from the Business Process Modelling material and results (top-down), or it can be conducted from the Business Information Entity/Core Component research and discovery analysis of existing forms of messages (bottom-up).

1.2.1.1 Requirements Analysis

A Requirements Analysis is carried out to identify the properties (functionality) of the message(s) that will support the desired exchange of information. This Requirements Analysis activity must initially focus only on defining “who needs what” in order to execute the Business Processes.

There should be no attempt to define how to get the information at the right moment to the right business user. This avoids prematurely tackling architectural issues regarding the design of the message flow: these issues are tackled in the next activity. It also avoids tackling technical implementation issues, which are not the subject of this Primer, since its ultimate objective is to provide solution-neutral Message Specifications.

The goal of this stage is to define the communication requirements caused by the physical separation of the Actors involved in the Business Processes.

The key objectives of the Requirements Analysis are:

· to define the logical communication problems that need to be solved;

· to refine the scope of the Message Specification(s) that will be developed;

· to define precisely the expected properties of the Message Specification(s) (their functionality, interaction with Business Actors and Business Roles).

The main activities of the Requirements Analysis phase are:

· identification of the goals of the Message Standard (i.e. exchange of information and possibly enhanced performance of Business Processes);

· specification in outline of functional, i.e. behavioural, requirements;

· Specification of constraints, i.e. imposed restrictions.

The deliverables of the Requirements Analysis phase are:

· Textual descriptions refining the scope of the final solution and constraints;

· Requirements Use Case of the functionality of the solution (described in a Use Case Diagram) and of the information used by each of the Business Roles (described in a Business Component Diagram, possibly complemented with textual descriptions of some business related rules).

· For each Business Process, information is defined which is not available/ not owned by the business actor that is responsible for the execution of the Business Process.

· For each unavailable piece of information, a Use Case is created which is part of a communication requirements system and the Business Role that is able to provide this information, is defined.

· A definition, arguments, triggers, pre- and post-conditions that define the Use Case must be given.
This means that one does not look into details of the Message Standard, i.e. at this stage there is no focus on Message Flows and Message Definitions.

1.2.1.2 Logical Analysis

The purpose of the Logical Analysis is to define the details of the Message Specification. This means that the focus is now on defining the Message Flows and Message Definitions that are needed to get the required information at the right time to the right business user. The Message Specification is still characterised from a pure business perspective. The focus still remains on the semantics (i.e. the underlying business meaning) and not yet on the syntax (i.e. how to physically represent a Message and a set of validation rules). All decisions are driven by the requirements.

The key objectives of the Logical Analysis are:

· to document the overall architecture of the Message Specification(s), e.g. is it meant for user-to-user communication or for a solution that is centrally co-ordinated by, say, a third party;

· to determine the possible Message Flows;

· to determine the business content of the required Messages;

· to determine which rules apply to the various Message Flows and Messages.

The main activities of the Logical Analysis phase are:

· documentation of the overall architecture of the Message Specification(s);

· refinement of the requirements into concrete Use Case Realizations and identification of Messages, Message Flows and rules related to these Message Flows;

· identification of the required business contents and structure of the Messages and the rules that govern the Message Flows and the Messages. This will provide a first draft of the Message Definition.

The deliverables of the Logical Analysis phase are:

· A Use Case Realization Diagram (containing a structured description of the Use Case Realizations;
· A textual description of the architecture of the system (subsystems/users) in case of a centrally co-ordinated system;

· Collaboration Diagrams (i.e. the possible exchanges of Messages);

· Sequence Diagrams (i.e. the typical exchanges of Messages in the context of a scenario;
· Message Activity Diagrams.
1.2.1.3 Logical Design

The purpose of the Logical Design is to refine the result of the Logical Analysis in order to make a formal, i.e. precise and unambiguous, Message Specification. In the process, it will identify items to be reused, such as Message Components and Message Elements.

Logical Design refines both the precise structure of the Message(s) involved, and the precise and full description of the interaction between all Business Role(s) involved.

The key objectives of the Message Design are:

· to define the reusable Message Components and Message Elements that will be used to create the required Message Definitions;

· to define new reusable Message Components that must be created;

The main activities of the Message Design phase are:

· identification of the required message information

· identification of the reusable Message Components derived from the appropriate Business Components in order to build the Message Definition. This may lead to the creation of new Message Components within the Data Dictionary;

· formalisation of the Message Definition.

The deliverables of the Logical Analysis phase are:

· Message Definition Diagrams

· Textual Business Rules that are written in a formal language and that complete the formalisation of the logical model.

1.2.1.4 Technical Design (not covered)

The purpose of Technical Design is to produce a physical implementation of the Message Definitions. This Primer does not address this stage, as the Primer is intended to guide people on the production of logical, syntax-neutral, Message Specifications.

2 STEPS

The objective of analysis should be to discover…

2.1 REQUIREMENTS ANALYSIS

2.1.1 Key Issues

· What are the requirements to communicate information between the actors involved in the business processes being addressed?

· What are the interactions of the business roles?

2.1.2 Activities

2.1.2.1 Define final scope & boundary

Define the Business Processes that need to be covered by the solution. This will be done based on the Business Process diagram that has been defined during business analysis and based on the requirements and scope that have been defined for this message standard.

2.1.2.2 Define communication requirements

It is necessary to make sure that all the Business Processes that are in the scope get access to the knowledge they need to get completed. The solution will therefore be to create a system
 that makes sure that each Business Process gets the information it needs, and that each Business Process provides all information that other Business Processes need. The goal of the requirements analysis is to define what information needs to be provided, to whom, under which conditions, etc.

The following steps shall be followed:

· Produce a diagram that contains the Business Processes that are in the scope, the Business Roles that take part in these Business Processes and in the middle the "system"

· Define for each Business Process to be executed what information is required. This information consists of the input arguments, possibly information that triggers the Business Process (e.g. the fact that another process is terminated) and possibly information to be able to check the pre-conditions.

· Define which information (from the above-defined set of required information) is not available to which Business Role participating in the Business Process (i.e. which information is not owned by the Business Roles).

· Create a "Requirements Use Case" for each piece of information that needs to be communicated as part of the system and define which Business Role is able to provide this information. Remark that in some cases multiple Business Roles may provide this information (possibly at different moments in the execution of the overall Business Process). Remark also that the Requirements Use Case may already exist, if it is needed by another Business Process.

Describe each Requirements Use Case with following information:

· Definition: the goal and functionality of the Use Case; which information is it providing to which Business Processes.

· Trigger: the event that will start the execution of the Use Case.

· Pre-conditions: the conditions that must be fulfilled in order to be able to execute the Use Case.

· Post-conditions: the conditions that must be met when the Use Case has been executed.

· Arguments: the information that is used and produced by the Use Case.

Based on the analysis done in the previous step and in the project scope:

· systematically write down all constraints pertaining to specific logical applications/implementations in potential business context(s).

· verify whether or not there are any impacts on the functional requirements that have been described in the Requirements Use Case Diagram.

2.1.3 Ideas to help

The following ideas are offered as guidelines to help carry out the activities described above:

· When defining the requirements at this overview level, it may be necessary/useful to combine a number of potential Requirements Use Cases. For example, if they all deal with the same Business Information, or if they are always executed together by the same Business Roles, or to zoom in/out of potential Requirements Use Cases (e.g. in order to have a manageable level of detail).

· In some cases, the Business Components contained in the Business Component Diagram need to be refined first (e.g. if a Business Role is only responsible for part of the information). This means these Business Components are updated accordingly.

· In some cases, part of the Business Process Diagram may need to be redefined first (e.g. if a Business Role is only responsible for part of the Business Process).

· It may help to analyse the different Business Processes in the normal sequence in which they are executed.

2.2 LOGICAL ANALYSIS

2.2.1 Key issues

What is the overall architecture of the solution
? What are the subsystems and/or users taking part in the exchange of Messages? Do we go for a user-to-user or for a centrally co-ordinated solution?

· What are the business scenarios? The different Messages can be exchanged according to a number of admissible message flows that need to be identified.

· What are the Messages in terms of their business content? The exchanged information should have a business value. Message Components/Elements are defined from and traced to Business Components/Elements that were identified during the Business Analysis and Requirements Analysis activity.
· Which rules apply to the various scenarios and Messages and what is the scope of each rule? If the scope is the Message only, the rule refers only to the content of the Message. If the scope is the scenario, the rule checks the Message content against the overall scenario information (e.g. the information contained in the previously exchanged Messages).

2.2.2 Activities

2.2.2.1 Define the “architecture”

· Defining the architecture of the solution means that one has to identify the various "players"
 that will be involved in the solution. These "players" are called "subsystems" and defining these subsystems and the activity they will perform will help to define the required message flow.

· How to define these subsystems? Although we're not looking for individual actors, it's a fact that there is a relation with the TYPE of actors that will play the Business Roles in the solution. The fact that financial institutions are involved will mean for instance that one or more types of financial applications can be considered.

It is therefore good practice to combine at this point the definition of subsystems and the definition of types of actors:

· Decide whether central systems (e.g. TFM, market infrastructure) will be involved. If this is the case there will be a subsystem associated to each central system.

· Associate a subsystem to each type of actor that will play one or multiple related Business Roles. The fact whether multiple Business Roles can be represented by one subsystem will have to be decided on a case-by-case basis, based on fundamental similarities or differences in one or more subsystems behaviour. It will also be influenced by whether or not the same actor ALWAYS plays multiple roles or not.

2.2.2.2 Define the Use Case Realizations

· Taking into account the subsystems that have just been defined, describe the way(s) in which the Requirements Use Cases will be realized by the subsystems (i.e. how the subsystems will interact) and what message flows are required for this.

· The Use Case Realization will at least be described by text and by a sequence diagram, showing the message flow. Optionally, one can add an activity diagram and a collaboration diagram (note that the latter can be derived automatically from the sequence diagram). The description(s) of the Use Case Realization will provide information about the message flows that need to happen between the subsystems, the sequence in which these flows will take place, exception handling, trigger, pre- and post-conditions related to a message flow.

· For each identified message flow define the name of the Message, the required Message content and the high-level Message structure (i.e. what information should logically be put together). This information must be documented in the Message representations of the sequence diagram. The "Message content" can be found by taking in to account the details of the information that is required and provided by the different Business Processes (based on the description in the Requirements Use Cases). One can also specify information regarding cardinality, choices and roles and textual descriptions of invariants (i.e. consistency rules). Where necessary, one should also identify whether message flows are synchronous or asynchronous, push or pull, ...

· Refine the subsystems diagram, by adding the message flows.

· Produce an activity diagram (if useful). An activity diagram presents a high-level control flow. The benefit of the activity diagram is that it shows, in a simple way, how the dynamics of the solution integrate in the dynamics of the business.

Each activity should correspond to a Business Process that has been defined during Business Analysis.

The type of activity diagrams that is used is called "Swim Lanes". Indeed, for each subsystem's role, there is a "swim lane" indicating the activities performed by that role and, optionally, major states that can be reached by that role.

2.2.3 Ideas to help

The following ideas are offered as guidelines to help carry out the activities described above:

2.2.3.1 In General

· The decision of the basic architecture (i.e. user-to-user or centrally co-ordinated) will in most cases be dictated by the initial requirements.

· The selection of the architecture (actors and subsystems) will be mainly based on the identified technical and non-functional requirements.

· Typical examples of actors in the financial industry include banks, agents (like brokers, investment managers, ...), corporates, etc.

· Where necessary a subsystem (for a particular type of actor) can later be "specialised" per Business Role in other diagrams (in sequence diagrams, collaboration diagrams, ...).

· Like the Business Roles, the actors will be part of the Dictionary. Within the project they will be added in the Business Role diagram (but with a clear indication that they are actors). The diagram will also show the links between actors and the Business Roles that are played.

· In general each Requirements Use Case can (and will) be realized according to multiple scenarios: for each scenario a separate Use Case Realization must be defined and described.

· The Use Case Realizations must also take into account (and thus describe) the exception handling, the error handling, the acknowledgements, etc. These may result into additional Sequence Diagrams.

2.2.3.2 Message granularity

Initial decisions concerning Message granularity must be taken (following rules will consequently have an impact on ???? Granularity Message Modelling Guidelines):

· Messages need to be precise and fit-to-specific purposes. Message re-usability will be very limited. Re-use is at the level of Message Components (see further on Message Design Guidelines). Having very specific Messages will lead to the multiplication of the number of Messages and will drive the need for a way for selecting the right Message. This is exactly the purpose of the Business Process definition step in this Methodology.

· The minimal guideline is to have separate Messages for different functionality (e.g. separate Messages for create, modify, cancel; separate Messages for instructions and reporting).

· With regards to different types of financial instrument, the guideline is to cover them by the same Message unless the distinction is not only in the description of the financial instrument (e.g. because another financial instrument is other parties must be identified in the Message).

With regard to "Market Practices", the guideline is to produce first a Market Practice independent Message (i.e. a Message containing all the commonalties). Next we can foresee optional parts in which the specific information of the chosen Market Practice can be added and cardinality may be more specific. Market practices may also result in different Message versions, a different Message order and even new Messages.

· A useful check to verify whether it makes sense to create multiple Messages versus one single is to consider the impact of removing a particular component or element from a Message. If the removal implies the creation of a huge number of Messages (e.g. creating separate Messages for payment in BEF, in GBP, in USD, ...) it's not a good idea. If the removal of the component or element doesn't lead to a removal or simplification of rules within the Message it's probably not a good idea either (e.g. removal of a buy/sell indicator means that other rules can be dropped).

In those cases when the element that is considered to be removed contains a large number of possible values, it is not advisable to remove that component since each of its values will result in a new (i.e. different flavour) Message.

Note that a Use Case Realization is only one possible solution for a single set of requirements. There can be multiple solutions for the same problem. In that case there would be multiple Use Case Realizations for the same Use Case.

When identifying Use Cases, one might identify that some Use Cases are specialisations, extensions or combinations of others. For that purpose, the Include, Extend, and Generalisation relationships can be used.

2.3 LOGICAL DESIGN

2.3.1 Key issues

· Which existing Message Components will be used?

· Which new Message Components must be created?

2.3.2 Activity: Define Message Components

It is important to understand what the various components in a Message can be. This is done using below Message metamodel. It shows what the allowed components, relationships between components, Data Types, etc… in a Message can be. Any Message must be constructed according to [image: image2.emf]Figure 2: Illustration of guideline above

A1B1

att1

att2

att3

<<MessageComponent>>

A1

att1

att2

<<MessageComponent>>

B1

att3

att4

<<MessageComponent>>

this metamodel.

How to read this metamodel:

A Message Construct normally represents a structural element of a “document” (e.g. Statement Header). It helps to group together Message Components (either as a Choice between the components or as a Sequence of Components) without itself having a real business meaning. It also allows simplifying the structure of a message. A Message Construct cannot be reused. If the same structure is needed in another message, it needs to be recreated. The principle is however that if a message construct needs to be reused, it is likely a Message Component.

A Message Component is composed of Message Elements and/or other Message Components. A Message Element either references another Message Component (either using an aggregation or as a type), or has a Data Type. A Data Type is a Quantity, an Identifier, a Code, an Amount, etc…

Classes representing Message Components have the <<MessageComponent>> stereotype.

2.3.3 Ideas to help

The following ideas are offered as guidelines to help carry out the activities described above:

2.3.3.1 Derive All Message Components from Business Components

Message Components are derived from Business Components
. A traceability link needs to be defined between a Message Component /Element and the related Business Component / Element. This is done by creating a uni-directional association from the Message Component to the Business Component. There can be several Message Components defined and traced to one Business Component.

2.3.3.2 Select / create the right Message Components for a Message

1. The high level structure that was defined during the logical analysis will give a first indication of what type of information should be kept together.

2. The first (and simplest) case is where a number of Business Elements are needed from one single Business Component. In that case the Dictionary can be searched for all Message Components that are based on this Business Component. If there is a Message Component that contains the exact required elements with the correct cardinality, this is the obvious choice.

3. What if there is no Message Component that exactly fits the needs?

· A Message Component can be reused that contains too many elements (if these extra elements are acceptable)

· A Message Component can be reused that is less restrictive on cardinality (if a lesser validation is acceptable)

· Two or more Message Components can be used to get all the required elements. One can either:

· put the Message Components next to each other in the Message 573

· create a Message Construct
 to combine the Message Components. This Construct will then be local to the message and never reused in another message. Hence it will not be in the Dictionary either.

· propose to the RA to create a new Message Component out of the combination.

4. If a number of Business Elements are needed from multiple Business Components and there is no need to express relations between the different Business Components, go back to the previous case.

5. If a number of Business Elements are needed from multiple Business Components and there IS a need to express relations between the different Business Components, for example if a link is needed between an Account with Account Owner and Account Servicer, the Dictionary should be searched for all Message Components that are based on one of the identified Business Components.

Concentrate on those Message Components that express already a relation between two (or more) of the Business Components. Try to find a Message Component that contains all the elements that are needed and that expresses the required relationship(s). If this Message Component doesn't exist try again to find either a Message Component that contains more or to combine multiple Message Components. If this isn’t an acceptable solution the creation of a new Message Component can always be proposed.

2.3.3.3 Define a new Message Component

1. If a Message Component is needed with elements form one single Business Component, propose a Message Component that is based on this Business Component and that contains exactly the elements needed, with the required cardinality. A Message Component can only have the same name as the corresponding Business Component if they both have the same set of attributes. Hence in most cases Message Components should not be given the same name as Business Components

2. If a Message Component is needed with new elements that do not exist in any Business Component but that only make sense in a specific Message, i.e. technical or derived Message Elements (see 4.3.1.4. What are Message Elements). In this case, propose a Message Component that is based on this Business Component and that contains exactly the required elements and add the specific Message Elements for which no equivalent Business Elements exist, with the required cardinality.

3. If a Message Component is needed with Business Elements from multiple Business Components (because a relationship between the Business Components must be expressed), following options are available:

· Place the relationship in the Message and use "simple" Message Components (i.e. Message Components each of which is based on a single Business Component)

· Link "simple" Message Components to a “parent” Message Component or Message Construct, whereby all simple Message Components are “siblings” (e.g. the new component has three Message Components A, B and C). In this case the modeller can express the fact that the different Message Components belong together and he/she can express some cardinality information. Propose the new Message Component to the RA.

· Create a new Message Component that expresses the dependency (e.g. the new Message Component A1 is based on Business Component A and contains an aggregation with a Message Component B1 based on Business Component B). In this case it is possible to keep an explicit aggregation or to "import" the Message Elements from the dependent Message Component into the parent Message Component (i.e. using attributes instead of aggregation). This last option should be used carefully as it can express less dependency (e.g. it cannot express that either all the Message Elements coming from Message Component B1 or none should be present). A guideline is to use this option mainly when there's only one Message Element coming from Message Component B1 involved.

[image: image3.emf]StructuredPostalAddress

AddressType : AddressType_Code

Block : Max35_Text

BuildingIdentifier : String

BuildingName : Max35_Text

Country : Country_Code

CountyIdentifier : Identifier

DistrictName : Max35_Text

Floor : String

Lot : Identifier

MailDeliverySubLocation : Identifier

PostCodeIdentifier : Identifier

PostOfficeBox : Identifier

RegionIdentifier : Identifier

State : Identifier

StreetName : Max35_Text

StreetBuildingIdentifier : Identifier

TownName : Max35_Text

DistrictSubDivisionIdentifier : Identifier

PostalAddress

<<Abstract>>

FreeFormatPostalAddress

AddressLine : Max35_Text

2.3.3.4 What are Message Elements

A Message Element can be:

2.3.3.4.1 A Message Element typed with a Data Type

This Message Element is “copied” from a Business Component to the Message Component. In this way, Business Elements are reused as such, with their complete definition (name, textual definition and type). The traceability between Business Element and Message Element is implicit (based on the Message Element name)

2.3.3.4.2 A Message Element typed with a Message Component

A Message Element of a Business Component typed with a Business Component becomes a Message Element of a Message Component typed with a Message Component. The Message Component used as a type must follow the traceability principle and be traced to the corresponding Business Component. The traceability between Message Elements is also implicit (based on the Message Element name).
2.3.3.4.3 A technical Message Element

A technical Message Element is a Message Element that only makes sense in a message context. There is no traceability link.

2.3.3.4.4 A derived Message Element

In some cases, a Message Element with a specific semantic will be needed in a message model. It might be required, for example, to reference a specific instance of a Business Component (the date of the “last” entry instead of the entry date) or to reference a calculated data. In this case, the Message Element name must express the specific semantic (e.g. LastEntryDate) and an explicit traceability link must be defined between the created element and the corresponding element in the business model.

The following example describes these principles.

MsgComponent1

Attribute1 : Datatype1

Attribute2 : MsgComponent2

TechAttribute3 : Datatype3

BusinessComponent1

At tribute1 : Datatype1

At tribute2 : Busi nessComponent2
Figure 4-1: Deriving a MessageComponent from a BusinessComponent 658

1. A Message Component (MessageComponent1) is created and a traceability link is added with the corresponding BusinessComponent (BusinessComponent1).

2. Attribute1 is copied. Neither the name nor the type is modified. The name will be used to handle the traceability link and a check will be performed on the type.

3. Attribute2 is a Business Component (BusinessComponent2). A corresponding Message Component (MsgComponent2) needs to be defined. Attribute2 in MessageComponent1 is then redefined using the type “MsgComponent2”. The traceability between BusinessComponent1.Attribute2 and MessageComponent1.Attribute2 is implicit (based on the attribute name).

4. TechAttribute3 was created. There is no traceability link and a specific Datatype (Datatype3) has been specified.

2.3.4 Advanced Ideas

2.3.4.1 How to aggregate two Message Components

When two Message Components are related, the relation can be expressed either explicitly with an aggregation between the two components, or indirectly by using an attribute.

· When the relationship is modelled as an aggregation link, the link is explicitly shown between the two components. The role name and definition allow giving additional contextual information. This representation is more visual, but quickly ‘floods’ the diagram with links.

· In the latter case, the type of the attribute in one Component references (read: points to) the other Message Component. In that case, the name and the definition of the attribute allow giving additional contextual information. The name of the attribute is equivalent to the name given to the aggregation (role name) in the previous case. This approach is less visual (the link is implied), but the diagram seems less ‘flooded’ with aggregations in case of a complex Message. This modelling way is also known in UML as using attributes as ‘foreign keys’.

2.3.4.2 How to handle abstract classes

Message Components should never be developed for an abstract Business Component. A Business Component is defined as abstract when it cannot be instantiated. A Message Component is, to some extent, an implementation of a Business Component. Hence it doesn’t make sense to have an implementation for abstract Business Components.

Consequently, since an Abstract Business Component can never have a traceability link, the traceability will be on the Business Components specialising the abstract Business Component.

2.3.4.3 [image: image4.emf]SettlementDetails

AccountId : Max35_String

<<MessageComponent>>

Account

Id : Max35_String

Name : Max 35_String

Figure 4: Illustration of naming

'moved' Message Elements

How to handle tables (bi-directional relations)

If a relationship between two Business Components is bi-directional, additional Message Components will be introduced representing each direction of this association. This is a consequence of having hierarchical messages.

For example in ISO 15022 XML, a relation is represented by nesting the related Message Components. The nesting of two Message Components mean that one component definition contains the other component definition.

Financial InstrumentDet ail

IsinIdentifier : IsinIdentifier

QuotationPlace : MicCode

FinancialInstrument

IsinIdentifier : IsinIdentifier

DescriptionText : DescriptionText

Market

MicCode : MicCode

CountryCode : CountryCode 1..n 1..n 1..n 1..n

IsQuoted

FinancialInstrumentIdentification

Isin Identifier : Isin Identifier

So if FinancialInstrument contains Market and Market contains FinancialInstrument, it would mean that message instances could contain an endless loop. In such a MessageComponent, we need a representation of only one direction of the relation “IsQuoted”. The solution is to define a MessageComponent called for example “FinancialInstrumentDetail” that would contain only the required information: the FinancialInstrument Identification and the identification of its quotation place.

2.3.4.4 How to handle recursivity (relationship loops)

Assume for example three Business Components A, B and C, whereby A is linked to B, B is linked to C and C is linked to A; then additional Message Components will need to be introduced to avoid introducing recursivity. Again, the reason is that ISO 15022 XML essentially supports hierarchical relations (tree representation) while UML modelling allows defining networks of relations.

2.3.4.5 Inheritance

Inheritance in Business Components should not be duplicated in Message Components. Inheritance in Business modelling allows classifying Business Concepts. Message Components are only limited “views” developed to cope with implementation requirements.

2.3.4.6 How to optimise Message Components

Suppose a Business Component A is linked to a Business Component B, there are basically two ways to define Message components:

1. Define a Message Component A and a Message Component B and represent the relation between A and B by defining an aggregation relation from A to B.

2. Add in the Message Component A the required Message Elements of B. This process is known as denormalisation. In this case, explicit traceability links need to be defined between the denormalised Message Elements (in Message Component A) and their business equivalent (in Business Component B).

3. Be very careful about the naming of these ‘moved’ Message Elements. Since Message Elements are ‘context sensitive’, it is strongly recommended to include the context from which the Message Element was ‘removed’ in the new name that is given to the Message Element.

Below example shows how the Message Element Id that belongs to the Business Component Account must be renamed to AccountId when it is ‘moved out of its context’.

2.3.5 Activity : Compose Messages

For each identified Message in the sequence diagram, combine the selected (or new), Message Components to create the final structure of the corresponding Message in the Message Definition Diagram.

An ISO15022 compliant message is basically a tree data structure. Each branch of the tree is defined by its components. The principles defined for designing Message Components also apply to designing Messages.

To make sure all Messages are constructed in the same way, they have to follow the restrictions and rules imposed by what is called the message metamodel.

2.3.5.1 Ideas to help

The following ideas are offered as guidelines to help carry out the activities described above:

2.3.5.1.1 Assemble Message Components to build Messages

· The basic rule is that components should be linked in a “non-intrusive” way. If a component A and a component B need to be linked (because, for example, A “owns” B), the relation “owns” needs to be implemented without impacting the definition of A or B unless they always have to be used jointly.

· A Message is modelled as a class with a stereotype <<Message>>.

· A Message is composed of Message Components and/or Message Constructs.

· A Message Construct is a class with stereotype <<MessageConstruct>>. Using these can give additional structure to a Message. It helps to group together Message Components (either as a Choice between the components or as a Sequence of Components) without itself having a real business meaning. Rules can be expressed at the level of Message Constructs or at the message level itself. A Message Construct cannot be reused. If the same structure is needed in another message, it needs to be recreated. The principle is however that if a message construct needs to be reused, it is likely a Message Component.

· A Message Component is a class with stereotype <<MessageComponent>>. Message Components cannot be modified when assembling them into Messages. It means that no attributes and no aggregation links can be added to a <<MessageComponent>> class.

· Where necessary, add information about cardinality, choice, facets (e.g. the allowed structure of an element), operations (e.g. check that a currency code exists) and Business Rules (e.g. the Settlement Date must be later than the Order Date). (See ISO 15022 XML Design Rules document)

2.3.5.1.2 Message granularity

Many of the decisions regarding Message granularity have already been taken when the Use Case Realizations were developed. The same main guidelines should still be checked when composing the Messages.

2.3.5.1.3 Segregate processing information from support data

Messages should not contain Business Process indicators (Buy, Sell, Create, Delete, …).

Their identification will be done by including them in headers or in the Message name, or be part of the scope of the Message. Messages should only contain the data required to support the Business Processes, no identification of the Business Processes or refinements of Business Processes.

3 APPENDIX

3.1 List of Dictionary Items

3.1.1 Business Concepts

The Data Dictionary contains the following types of Business Concepts, which reflect the nature of the Dictionary Items that are defined and used during the Business Analysis and Requirements Analysis activities. They form the basic items with which the Business Information Model of a Business Area is built:

· Business Components, possibly containing Business Rules;

· Business Elements;

· Business Associations;

· Business Actors;

· Business Roles.

3.1.2 Data Types

The objective of a Data Type is to specify unambiguously the set of valid values that a Business Element or a Message Element can have.

The Data Types are categorised in a limited number of Data Type Representations, such as amount, identifier, quantity, code, datetime and text. The full list of Data Type Representations is registered in the XXX Data Dictionary.

Each Data Type Representation defines the following information:

· The primitive type that will be used for all Data Types that are based on this Data Type Representation.

Some examples:

· Data Types that are based on Data Type Representation “text” will use “string” as primitive type. 510

· Data Types that are based on Data Type Representation “amount” will use “real” as primitive type. 511

· The additional information that must be specified to distinguish Data Types that are based on the same Data Type Representation. This additional information will limit the set of possible values that can be used for a particular Data Type. This can be done in two ways:

1. Defining explicitly the list of possible values, by exhaustive enumeration or by referencing a list. For the Data Type Representation “code” the Registration Authority will either use an existing code list or the Registration Authority will define a new Enumerated Code Value List within the ISO 15022 517 Repository. In the latter case all code values will be 1 up to 4 alphanumeric characters.

2. Specifying a format specification (e.g. by defining the length of a string). These format specifications will be in the form of XML constraints (e.g. MaxLength).

Some examples:

· Data Types that are based on Data Type Representation “identifier” can specify the list that contains the possible values of this identifier (e.g. the Data Type “ISINIdentifier” contains its possible values in the “ISIN directory”).

· Data Types that are based on Data Type Representation “text” can specify the maximum length that is allowed (e.g. the Data Type “Max35Text” which is used amongst others for the street name has a maximum of 35 characters).

3.1.3 Message Concepts

The Data Dictionary contains following types of Message Concepts, which reflect the nature of the Dictionary Items that are defined and used during the Logical Analysis and Logical Design activities. They form the basic items of Message Definitions.

· Message Components are the reusable Dictionary Items with which the Message Definitions must be built. A Message Component is normally derived from one single Business Component. It can be considered as a ‘view’ on the Business Component that will be used in Message Definitions.

Note that several Message Components can be derived from the same Business Component. These Message Components will be different because of their specific subset of Message Elements or because of specific constraints such as specific Message Rules or cardinality constraints.

Note also that in exceptional cases a Message Component can be based on a set of related Business Components.

Message Components may contain Message Rules that define constraints on the use of the Message Component.

· Message Elements: they are usually derived from the Business Elements of the Business Component corresponding to the Message Component. There may be situations where Message Elements in one Message Component come from multiple related Business Components. The Message Elements will then be linked to the relevant Business Element in the correct Business Component.

The set of possible values of a Message Element is either defined by a Data Type or by another Message Component.

G

O

O

L

� Note that "system" should not be understood as a software system and not even as a single central system: it is just the whole of communication requirements that will ultimately be realized by a combination of "subsystems" under control of actors and possibly a central "subsystem" (which would be defined in the logical analysis).

� "Solution" is defined here as "a system made from automated sub-systems and/or users that interact by exchanging messages according to a set of business scenarios and of Business Rules".

� "Players" should not be understood here as individual actors but as the different types of software

applications, that will execute some activity and that will exchange information (i.e. messages) with other "players".

� Business Components cannot be used directly in message models.

� A message construct is a class with stereotype <<MessageConstruct>>. It is local to the message it is used in, and is as such never reused in another message.

PAGE

 19 (1)

